The University of Jordan



•​ Baha Alzalg. Combinatorial and Algorithmic Mathematics: From Foundation to Optimization. xv+527p. To be published by John Wiley & Sons​ ISBN: 9781394235940 (2024).​​


•​ Hadjer Alioui and Baha Alzalg. A hybrid branch-and-bound and interior-point algorithm for stochastic mixed-integer nonlinear second-order cone programming. To appear in Communications in Combinatorics and Optimization (2024).

•​ Baha Alzalg and Lilia Benakkouche. The nonconvex second-order cone: Algebraic structure toward optimization​. To appear in Journal of Optimization Theory and Applications (2024).

•​ Baha Alzalg​,​ Karima Tamsaouete, Lilia Benakkouche, and A​yat Ababneh. The Jordan ​algebraic structure of the rotated quadratic cone​. To appear in Linear and Multilinear Algebra (2​024).​​​

•​ Baha Alzalg and Karima Tamsaouete. ​​Algebraic-based primal interior-point algorithms for stochastic infinity norm optimization. To appear in Communications in Combinatorics and Optimization. (2024).

•​ Baha Alzalg. ​​Barrier methods based on Jordan-Hilbert algebras for stochastic optimization in spin factors. RAIRO Operations Research. 58(1) 1011-1044 (2024).

•​ Amira Achouak Oulha and Baha Alzalg. ​​A path-following algorithm for stochastic quadratically constrained convex quadratic programming in a Hilbert space. Communications in Combinatorics and Optimization. 9(2) ​353-387 (2024).

•​ Lilia Benakkouche, Blake Whitman and Baha Alzalg. Polar convex programming: A new paradigm for nonlinear optimization. Applied Mathematics and Information Sciences. 17(3) 539-551 (2023).

•​ Karima Tamsaouete and Baha Alzalg. An algebraic-based primal-dual interior-point algorithm for rotated quadratic cone optimization. Computation. 11(3), 50 (2023).​​

•​ Baha Alzalg and Mohammad Alabedalhadi. A homogenous predictor-corrector algorithm for stochastic nonsymmetric cone optimization with discrete support. ​​Communications in Combinatorics and Optimization. 8, 531-559​ (2023).

•​ Baha Alzalg and Asma Gafour. Convergence of a weighted barrier algorithm for stochastic convex quadratic semidefinite optimization​. Journal of Optimization Theory and Applications. 196, 490-515 (2023).​​

•​ Baha Alzalg and Amira Achouak Oulha. ​On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization. Positivity. 26, 86 (2022).​

•​ Baha Alzalg and Hadjer Alioui. Applications of stochastic mixed-integer second-order cone optimization. IEEE Access. 10, 3522-3547 (2022).​

•​ Lewa' Alzaleq, Valipuram Manoranjan, and Baha Alzalg. Exact traveling waves of a generalized scale-invariant analogue of the Korteweg-de-Vries equation, Mathematics, 10(3), 414 (2022).​​​​​​

 Baha AlzalgLogarithmic-barrier decomposition interior-point methods for stochastic linear optimization in a Hilbert space. Numerical Functional Analysis and Optimization​. 41(8), 901-928 (2020).​​​​​

 Baha AlzalgA logarithmic barrier interior-point method based on majorant functions for second-order cone programming. Optimization Letters​. 14, 729-746 (2020).

 Baha Alzalg, Asma Gafour and Lewa Alzaleq. Volumetric barrier cutting plane algorithms for stochastic linear semi-infinite optimization. IEEE Access. 80, 4995-5008 (2020)​​.​​​​

 Baha AlzalgA primal-dual interior-point method based on various selections of displacement steps for symmetric optimization. Computational Optimization and Applications 72(2), 363-390 (2019).

 Baha Alzalg, Khaled Badarneh, and Ayat Ababneh. An infeasible interior-point algorithm for stochastic second-order cone optimization. Journal of Optimization Theory and Applications 181(1), 324-346 (2019).

 Baha Alzalg. Primal interior-point decomposition algorithms for two-stage stochastic extended second-order cone programming. Optimization​. 67(12), 2291-2323 (2018).​​

 Mohammad Alabed Alhadi and Baha Alzalg. Stochastic second-order cone programming: The equivalent convex program​. Applied Mathematics and Information Sciences 12(3), 1-6 (2018).​​

 Baha Alzalg and Mohammad Pirhaji. Elliptic cone optimization and primal-dual path-following algorithms. Optimization. 66(12), 2245-2274 (2017).

 Baha Alzalg. The Jordan algebraic structure of the circular cone. Operators and Matrices. 11(1), 1-21 (2017)​.

 Baha Alzalg and Mohammad Pirhaji. Primal-dual path-following algorithms for circular programming. Communications in Combinatorics and Optimization. 2(2), 65-85 (2017)​.​

 Vedat Erturk, Gul Zaman, Baha Alzalg, Anwar Zeb and Shaher Momani. Comparing two numerical methods for approximating a new giving up smoking model with fractional order derivative. Iranian Journal of Science and Technology Transaction A. 41(3), 569-575 (2017). ​

 Anwar Zeb, Gul Zaman, Vedat Suat ERTURK, Baha Alzalg, Faisal Yousafzai and Madad Khan. Approximating a giving up smoking dynamic on adolescent nicotine dependence in fractional order. PLoS ONE 11(4): e0103617. doi:10.1371/journal.pone.0103617 (2016).

 Baha Alzalg, Francesca Maggiono and Sebastiano Vitali. Homogeneous self-dual methods for symmetric cones under uncertainty. The Far East Journal of Mathematical Sciences. 99(11) 1603-1778 (2016).​

 Baha Alzalg. The algebraic structure of the arbitrary-order cone. Journal of Optimization Theory & Applications. 169(1), 32–49 (2016).

 Baha Alzalg. Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming. Applied Mathematics & Computation. 256, 494–508 (2015).

 Baha Alzalg and K. A. Ariyawansa. Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming. Journal  of Mathematical Analysis & Applications. 409, 973–995 (2014).

 Baha Alzalg. Homogeneous self-dual algorithms for stochastic second-order cone programming. Journal of Optimization Theory & Applications.163(1), 148–164 (2014).

 Baha Alzalg. Decomposition-based interior point methods for stochastic quadratic second-order cone programming. Applied Mathematics & Computation. 249, 1–18 (2014).

 Baha Alzalg. Stochastic second-order cone programming: Application models. Applied Mathematical Modelling. 36, 5122–5134 (2012).

 Baha Alzalg. Optimal search in a multi-component hypothesis testing. Proc. 3 rd Annual Int. Conf. Oper. Res. Stat. 115–121 (2013).

 Baha Alzalg, C. Anghel, W. Gan, Q. Huang, M. Rahman, A. Shum and C. Wah Wu. Contingency constrained optimal power flow solutions in complex network power grids. Proc. IEEE Int. Symp. Circuits Systems. 1636–1639 (2012).

 Baha Alzalg and K. A. Ariyawansa. Stochastic mixed-integer second-order cone programming: A new modeling tool for stochastic mixed integer optimization. Proc. Int. Conf. Scientific Computing. 315– 321 (2011).​​

 M. Jaradat and Baha Alzalg. Cycle-complete graph Ramsey numbers r(C4;K9); r(C5;K8) <= 33. International Journal of Mathematical Combinatorics. 1, 42–45 (2009).

• M. Jaradat and Baha Alzalg. The cycle-complete graph Ramsey number r(C6;K8) <= 38. SUT Journal of Mathematics. 44(2), 257–263 (2008).

 M. Jaradat and Baha Alzalg. The cycle-complete graph Ramsey number r(C8;K8). SUT Journal of Mathematics. 43(1), 85– 98 (2007).​​


•​ Asma Gafour, Baha Alzalg. A barrier Lagrangian dual method for multi-stage stochastic convex semidefinite optimization. Submitted for publication (2024).​

•​ Baha Alzalg and Lilia Benakkouche. Functions and inequalities associated with the nonconvex second-order cone​. Submitted for publication (2024).

​ ​Dissertation​​:

 Baha Alzalg. Optimization Over Symmetric Cones Under Uncertainty. Doctor of Philosophy (PhD), Washington State University (2011).


This page was last updated on Mar. 25​, 2024.​