Contents

About the Author xiii Preface xv Acknowledgments xvii About the Companion Website xxi

Part I Foundations 1

1 Mathematical Logic 3

- 1.1 Propositions 3
- 1.1.1 Notations 6
- 1.2 Logical Operators 6
- 1.2.1 Negation, Conjunction, and Disjunction 7
- 1.2.2 Implication and Double Implication 9
- 1.3 Propositional Formulas 15
- 1.3.1 Order of Logical Operations 16
- 1.3.2 Tautologies, Contradictions, and Contingencies 16
- 1.3.3 Negating Compound Propositions 18
- 1.3.4 Modeling Using Propositional Logic 20
- 1.3.5 Deriving Logical Equivalences 22
- 1.4 Logical Normal Forms 24
- 1.4.1 Disjunctive Normal Forms 25
- 1.4.2 Conjunctive Normal Forms 28
- 1.5 The Boolean Satisfiability Problem 29
- 1.6 Predicates and Quantifiers 30
- 1.6.1 Predicates 30
- 1.6.2 Quantifiers 31
- 1.6.3 Multiple Quantifiers 32
- 1.6.4 Multiple Predicates 33
- 1.6.5 Mixing Quantifiers 34
- 1.6.6 Negating Quantified Statements 35
- 1.7 Symbolizing Statements of the Form "All *P* Are *Q*" 37 Exercises 41 Notes and Sources 48 References 49

viii Contents

Set-Theoretic Structures 51

52

2	Set-Theoretic Structures 51
2.1	Induction 51
2.1.1	Principle of Induction for Predicates
2.1.2	Induction Proves Recursion 54
2.2	Sets 54
2.2.1	Set Membership 55
2.2.2	Cardinality of Sets 55
2.2.3	Set Equality 55
2.2.4	Subsets and Proper Subsets 56
2.2.5	The Empty Set 56
2.2.6	The Powerset Operator 56
2.2.7	Manipulating Sets 56
2.2.8	Sets Defined by Predicates 57
2.3	Relations 59
2.3.1	Equivalence Relations 60
2.3.2	Ordering Relations 62
2.4	Partitions 64
2.5	Functions 65
2.5.1	Surjections 68
2.5.2	Injections 69
2.5.3	Bijections 70
	Exercises 71
	Notes and Sources 73
	References 74

3 Analytic and Algebraic Structures 77

- Sequences 77 3.1
- Summations and Series 81 3.2
- 3.3 Matrices, Subspaces, and Bases 87
- 3.3.1 Matrices 87
- 3.3.2 Subspaces and Bases 89
- Convexity, Polyhedra, and Cones 91 3.4
- Farkas' Lemma and Its Variants 95 3.5 Exercises 97 Notes and Sources 99 References 100

Part II **Combinatorics** 103

4 Graphs 105

- 4.1 Basic Graph Definitions 106
- 4.1.1 Directed and Undirected Graphs 106
- Simple and Multigraphs 107 4.1.2
- The Vertex Degree 107 4.1.3
- Paths and Cycles 108 4.1.4
- 4.1.5 Subgraphs and Connected Components 108

- 4.1.6 Trees and Spanning Trees *110*
- 4.1.7 Complete and Bipartite Graphs 111
- 4.2 Isomorphism and Properties of Graphs 113
- 4.2.1 Graph Isomorphism 113
- 4.2.2 Graph Properties 115
- 4.3 Eulerian and Hamiltonian Graphs 118
- 4.3.1 Königsberg Bridge Problem 119
- 4.3.2 Eulerian Paths and Cycles *119*
- 4.3.3 Hamiltonian Paths and Cycles 121
- 4.4 Graph Coloring 122
- 4.5 Directed Graphs 125
- 4.5.1 Vertex In-Degree and Out-Degree 125
- 4.5.2 Directed Paths, Cycles, and Trees 126
- 4.5.3 Connectedness 127 Exercises 128 Notes and Sources 130 References 131

5 Recurrences 133

- 5.1 Guess-and-Confirm 133
- 5.2 Recursion-Iteration 136
- 5.2.1 Change of Variables 137
- 5.3 Generating Functions *138*
- 5.4 Recursion-Tree 140 Exercises 144 Notes and Sources 146 References 146

6 Counting 149

- 6.1 Binomial Coefficients and Identities 149
- 6.1.1 The Binomial Theorem and Coefficients 150
- 6.1.2 Binomial Identities 151
- 6.2 Fundamental Principles of Counting 154
- 6.2.1 The Product Principle of Counting 154
- 6.2.2 The Sum Principle of Counting 158
- 6.2.3 The Subtraction Principle of Counting 160
- 6.3 The Pigeonhole Principle *161*
- 6.4 Permutations 163
- 6.4.1 Permutations Without Repetition 164
- 6.4.2 Permutations with Repetition 165
- 6.5 Combinations 166
- 6.5.1 Combinations Without Repetition 167
- 6.5.2 Combinations with Repetition *168*
- 6.5.3 Distributing Objects into Distinguishable Boxes 172 Exercises 173 Notes and Sources 176 References 177

x Contents

Part III Algorithms 179

7 Analysis of Algorithms 181

- 7.1 Constructing and Comparing Algorithms *182*
- 7.1.1 Basic Tools for Constructing Algorithms *182*
- 7.1.2 Choosing and Comparing Algorithms 187
- 7.2 Running Time of Algorithms *189*
- 7.2.1 Line-by-Line Runtime Analysis 189
- 7.2.2 Types of Runtime Analysis 192
- 7.2.3 Summation Representations for Looping 194
- 7.2.4 Upper and Lower Bounds for Running Time 197
- 7.3 Asymptotic Notation 199
- 7.3.1 The Notations 200
- 7.3.2 Properties of the Notations 204
- 7.3.3 The Notations in Terms of Limits 207
- 7.3.4 Complexity Classification of Algorithms 208
- 7.4 Analyzing Decision-Making Statements 211
- 7.4.1 Simple Statements 211
- 7.4.2 If-Statement 211
- 7.4.3 For-Statement 211
- 7.4.4 While-Statement 211
- 7.4.5 Do-While-Statement 212
- 7.4.6 Block 213
- 7.5 Analyzing Programs Without Function Calls 213
- 7.6 Analyzing Programs with Function Calls 219
- 7.6.1 Analyzing Nonrecursive Programs 220
- 7.6.2 Analyzing Recursive Programs 222
- 7.7 The Complexity Class NP-Complete 224
 Exercises 228
 Notes and Sources 237
 References 238

8 Array and Numeric Algorithms 241

- 8.1 Array Multiplication Algorithms 241
- 8.1.1 Matrix–Vector Multiplication 241
- 8.1.2 Matrix–Matrix Multiplication 243
- 8.2 Array Searching Algorithms 244
- 8.2.1 Linear Search 244
- 8.2.2 Binary Search 246
- 8.3 Array Sorting Algorithms 248
- 8.3.1 Insertion Sort 248
- 8.3.2 Selection Sort 250
- 8.3.3 Merge Sort 252
- 8.4 Euclid's Algorithm 253
- 8.5 Newton's Method Algorithm 255
- 8.5.1 Newton's Method for Nonlinear Systems 257
- 8.5.2 Newton's Method for Optimization 259

Exercises 262 Notes and Sources 264 References 265

9 Elementary Combinatorial Algorithms 267

- 9.1 Graph Representations 267
- 9.1.1 The Adjacency List Representation 267
- 9.1.2 The Adjacency Matrix Representation 268
- 9.2 Breadth-First Search Algorithm 270
- 9.3 Applications of Breadth-First Search 273
- 9.3.1 Computing Spanning Trees (Forests) 273
- 9.3.2 Computing Shortest Paths 274
- 9.3.3 Testing Bipartiteness 275
- 9.4 Depth-First Search Algorithm 277
- 9.5 Applications of Depth-First Search 279
- 9.5.1 Computing Spanning Trees (Forests) 280
- 9.5.2 Detecting Cycles 281
- 9.5.3 Finding Connected Components 282
- 9.6 Topological Sort 283 Exercises 287 Notes and Sources 290 References 291

Part IV Optimization 293

10 Linear Programming 295

- 10.1 Linear Programming Formulation and Examples 296
- 10.1.1 General Form Linear Programs 296
- 10.1.2 Examples of Linear Programming Problems 298
- 10.2 The Graphical Method 302
- 10.3 Standard Form Linear Programs *309*
- 10.4 Geometry of Linear Programming 311
- 10.4.1 Extreme Points, Vertices, and Basic Feasible Solutions 311
- 10.4.2 Finding Basic Feasible Solutions 314
- 10.4.3 Pointedness 317
- 10.4.4 Optimality 318
- 10.5 The Simplex Method 320
- 10.5.1 Simplex Method for Maximization 320
- 10.5.2 The Full Tableau Method 323
- 10.5.3 The Big-M Method 330
- 10.5.4 Anticycling 335
- 10.5.5 Complexity 339
- 10.6 Duality in Linear Programming 339
- 10.6.1 Lagrangian Duality and LP Duality 339
- 10.6.2 The Duality Theorem 341
- 10.6.3 Complementary Slackness 345
- 10.6.4 The Dual Optimal Solution via the Primal Simplex Tableau 346

- xii Contents
 - 107 A Homogeneous Interior-Point Method 347 Exercises 350 Notes and Sources 360 References 361

11 Second-Order Cone Programming 363

- The Second-Order Cone and Its Algebraic Structure 363 11.1
- 11.2 Second-Order Cone Programming Formulation 368
- 11.2.1 Problem Formulation 368
- Applications in Engineering and Finance 370 11.3
- Euclidean Facility Location Problem 370 11.3.1
- 11.3.2 Portfolio Optimization with Loss Risk Constraints 371
- Optimal Covering Ellipsoid Problem 373 11.3.3
- 11.4 Duality in Second-Order Cone Programming 375
- A Primal-Dual Path-Following Algorithm 379 11.5
- Newton's Method and Commutative Directions 380 11.5.1
- 11.5.2 Path-Following Algorithm 382
- Complexity Estimates 384 11.5.3
- 11.6 A Homogeneous Self-Dual Algorithm 386 Exercises 389 Notes and Sources 391 References 392

12 Semidefinite Programming and Combinatorial Optimization 395

- 12.1 The Cone of Positive Semidefinite Matrices 395
- 12.2 Semidefinite Programming Formulation 399
- Problem Formulation 399 12.2.1
- 12.2.2 Formulating Problems as SDPs 399
- 12.3 Applications in Combinatorial Optimization 401
- Shannon Capacity of Graphs 401 12.3.1
- 12.3.2 Max-Cut of Graphs 402
- Combinatorial Topology Optimization 404 12.3.3
- Duality in Semidefinite Programming 405 12.4
- 12.5 A Primal–Dual Path-Following Algorithm 408
- Newton's Method and Commutative Directions 409 12.5.1
- 12.5.2 Path-Following Algorithm 411
- Complexity Estimates 413 12.5.3 Exercises 417 Notes and Sources 418 References 418

Appendix A Solutions to Chapter Exercises 421

References 487

Bibliography 489 Index 501