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Optimization is a term used to describe any step-by-step procedure created to find the best
solution to a problem with more than one solution. Ever since its inception in the 1940s,
initially in the context of military planning, linear optimization (originally and still known
as linear programming (LP for short)) has found extensive application across various indus-
tries and disciplines.

Let f ∶ [a, b] → ℝ be a nonlinear continuous
function. In Calculus, if we want to minimize/-
maximize the function f (x), we must take the
derivative, and then find the critical points. We
also check the endpoints, if there are any. We can
justify our maxima or minima either by the first
derivative test, or the second derivative test. In
the graph shown to the right, a and b are end-
points of the function f (x), and c and d are their
critical numbers (f ′(x) = 0 when x = c, d). The
function f has maximum values at x = a, d, and
has minimum values at x = c, b.

a c d b

y = f (x)
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Now, instead of optimizing a nonlinear
function on [a, b], consider a linear function
on [a, b]. In this case, we need to check
only the endpoints as in the figure shown
to the right. Linear optimization studies
generalizations of this easy (linear) case
to higher dimensions. More specifically,
instead of optimizing a linear function of
only one variable, say cx, on the closed
interval [a, b], we optimize a linear func-
tion of a finite number of variables, say
cTx = c1x1 + c2x2 + · · · + cnxn, on polytopes,
which are generalizations of polygons from
ℝ2 to ℝn, where the set ℝn consists of all
n-tuples of real numbers, ℝ. This study is
“easy” to understand because of linearity, but
it is “difficult” to carry out because of high
dimensionality.

a b

A linear function

x

y

In this chapter, we introduce linear programming, the graphical method, and study the
LP duality and geometry. We also study the most common linear programming algorithm,
the simplex method. Over and above that, we study an interior-point method as one of the
non-simplex methods. The references Bertsimas and Tsitsiklis (1997) and Nemhauser and
Wolsey (1988), for example, is a good source for information relative to this topic.

10.1 Linear Programming Formulation and Examples

In this section, we will see that applications of LP touch a vast range of real-world areas.
First, we present the general form of an LP problem.

10.1.1 General Form Linear Programs

An LP problem is the problem of minimizing a linear cost function subject to linear equality
and inequality constraints. We have the following example.

Example 10.1 The following is an LP problem.

minimize 4x1− x2 +3x3
subject to x1 + x2 + x4 ≤ 7,

2x2−x3 = 6,
x3 + x4 ≥ 4,

x1 ≥ 0,
x3 ≤ 0.
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Here, x1, x2, x3, and x4 are the decision variables whose values are to be chosen to min-
imize the linear cost function 4x1 − x2 + 3x3 subject to linear equality and inequality con-
straints. ◾

Generally speaking, assume that we are given a cost vector c = (c1, c2,… , cn)T and
we minimize a linear cost function cTx =

∑n
i=1 cixi over all nth-dimensional vectors

x = (x1, x2,… , xn)T subject to linear equality and inequality constraints. Then we are
interested in a problem of the form:

min cTx
s.t. aT

i x ≥ bi, i = 1, 2,… ,m1,

aT
j x ≤ bj, j = 1, 2,… ,m2,

aT
kx = bk, k = 1, 2,… ,m3,

xp ≥ 0, p = 1, 2,… ,m4,

xq ≤ 0, q = 1, 2,… ,m5.

(10.1)

Problem (10.1) is said to be the general form LP. We have the following definition.

Definition 10.1 Consider the minimization problem (10.1). Then:

(a) The variables x1, x2,… , xn are called decision variables;
(b) A vector x satisfying all of the constraints is called a feasible solution;
(c) The set of all feasible solutions is called the feasible set or feasible region;
(d) If xi ≥ 0 or xi ≤ 0, then xi is called a restricted variable; otherwise, it is called a free or

unrestricted variable (urs);
(e) The function cTx is called the objective function or cost function;
(f) A feasible solution x★ that minimizes the objective function (i.e., cTx★ ≤ cTx for any

feasible solution x) is called an optimal solution;
(g) The value of cTx★, corresponding to an optimal solution x★, is called the optimal cost

or optimal value;
(h) If the optimal cost is −∞, we say that the minimization problem is unbounded.

Example 10.2 Consider the following nonlinear minimization problem.

min 2x1 + |x2|
s.t. 5x1 + 7x2 ≤ 3,|x1| + x2 ≤ 4,

x1, x2 urs.
Using the fact that |t| = max {t,−t} for t ∈ ℝ, this problem can be expressed as

min 2x1 + y
s.t. 5x1 + 7x2 ≤ 3,

x1 + x2 ≤ 4,
−x1 + x2 ≤ 4,
y − x2 ≥ 0,
y + x2 ≥ 0,
x1, x2 urs,

which is an LP problem. ◾
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Note that there is no need to study maximization problems separately because maximiz-
ing cTx subject to some constraints is equivalent to minimizing (−c)Tx subject to the same
constraints (why?).

10.1.2 Examples of Linear Programming Problems

This part presents some examples of LP problems and allows the reader gain to some famil-
iarity with the art of constructing mathematical optimization models.

The procedure given in the following workflow, followed by some examples, will teach
us how to formulate linear optimization models.

Workflow 10.1 There are three steps involved in the formation of an LP problem:

(i) Identify the decision variables of interest to the decision-maker and express them as
x1, x2, x3,… .

(ii) Ascertain the objective function in terms of the decision variables. This would be a cost
in case of minimization problem or a profit in case of maximization problem.

(iii) Ascertain the constraints representing the maximum availability or minimum com-
mitment.

Example 10.3 (Maximizing profit in product manufacturing)
A company is involved in the production of two items, denoted as P1 and P2. The manu-
facturing process for each unit of product P1 necessitates 2 kg of raw material and 4 labor
hours for processing, while each unit of product P2 requires 5 kg of raw material and 3 labor
hours of the same type. On a weekly basis, the company has access to 45 kg of raw material
and 55 labor hours. For the financial aspect, the company gains a profit of JD 25 for every
unit of product P1 sold and JD 35 for every unit of product P2 sold. Formulate this problem
as an LP problem that maximizes the total profit.

Solution
The given data can be summarized in the following table.

Product Row material Labour hours Profit

P1 2 kg 4 h JD 25
P2 5 kg 3 h JD 35
Restrictions 45 kg 55 h

● The first step is to identify the decision variables. Let xi denote the number of units that
should be produced from product Pi per week, i = 1, 2.

● The second step is to determine the objective function. The objective is to maximize the
total profit. So, our objective function is z = 25x1 + 35x2.

● The third step is to formulate the constraints. In this example, the constraints are:

● A restriction on the row material. This can be formulated as 2x1 + 5x2 ≤ 45.
● A restriction on the labor hours. This can be formulated as 4x1 + 3x2 ≤ 55.
● Nonnegativity constraints. This can be formulated as x1 ≥ 0 and x2 ≥ 0.
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As a result, this problem can be formulated as the following LP model.

max 25x1 + 35x2
s.t. 2x1 + 5x2 ≤ 45,

4x1 + 3x2 ≤ 55,
x1, x2 ≥ 0. ◾

Example 10.4 (Maximizing profit in corn chip production)
A corn chip company operates with two distinct departments, each responsible for pro-
ducing two types of corn chips: “extra larges” and “really smalls.” The company earns a
profit of 225 per kilobag of extra larges and 175 per kilobag of really smalls (where a kilo-
bag contains 1000 bags). Each department adheres to specific production regulations per
day. The company’s primary objective is to maximize its profit while complying with these
regulations.

(a) Identify the decision variables.
(b) Write the objective function z in terms of the decision variables.
(c) Write inequalities expressing the following constraints:

(i) The production of extra larges should not exceed 20 kilobags per day, and the pro-
duction of really smalls should not exceed 30 kilobags per day.

(ii) No more than a total of 45 kilobags can be produced each day.
(iii) The number of extra larges produced daily must be at least 2∕3 of the number of

really smalls produced.
(iv) The company must utilize more than 250 hours of labor each day to satisfy union

requirements. Making one kilobag of extra larges consumes 10 hours and making
one kilobag of really smalls consumes 15 hours.

Solution
.
(a) The decision variables are:

x: The number of extra large corn chips produced per day;

y: The number of really small corn chips produced per day.

(b) z = 225x + 175y.

(c) . (i) x ≤ 20, y ≤ 30.
(ii) x + y ≤ 45.

(iii) x ≥ 2
3

y.
(iv) 10x + 15y > 250. ◾

Example 10.5 (Minimizing nutritional costs)
Two different food items, denoted as F1 and F2, contain vitamins A and B. Food F1 provides
2 units of vitamin A and 5 units of vitamin B per unit, while food F2 offers 4 units of vitamin
A and 2 units of vitamin B per unit. The cost of one unit of food F1 is JD 10, and for food F2, it
is JD 12.50. The objective is to meet or exceed the minimum daily nutritional requirements
for vitamins A and B, which are 40 and 50 units, respectively, at the lowest possible cost.
Formulate this problem as an LP problem.
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Solution
The given data can be summarized in the following table.

Food/vitamin A B Cost

F1 2 units 5 units JD 10
F2 4 units 2 units JD 12.5
Restrictions 40 units 50 units

Let xi be the number of units that should be daily produced from food Fi for a person,
i = 1, 2. This problem can be formulated as the following LP model.

min 10x1 + 12.5x2
s.t. 2x1 + 4x2 ≥ 40,

5x1 + 2x2 ≥ 50,
x1, x2 ≥ 0. ◾

Example 10.6 (Maximizing advertising audience)
A marketing manager has an annual advertising budget of JD 25,000, which he intends to
allocate to two advertising media, A and B. Media A, a monthly magazine, costs JD 1000
per message, and media B costs JD 1500 per message. The following conditions apply: For
media A, not more than one insertion is desired in the issue. For media B, at least five
messages should be placed. The expected effective audience for one message in media A
is 40,000 people, while for media B, it is 50,000 people. Formulate this problem as an LP
problem to maximize the total audience reached through advertising while staying within
the budget constraints.

Solution
The given data can be summarized in the following table.

Media Media A Media B Restrictions

Audience 40,000 people 50,000 people
One message cost JD 1000 JD 1500 JD 25,000
Number of messages At most 1 At least 5

Let x1 and x2 be the number of messages that should appear in media A and B, respec-
tively. This problem can be formulated as the following LP model.

max 40, 000x1 + 50, 000x2
s.t. 1000x1 + 1500x2 ≤ 25, 000,

x1 ≤ 1,
x2 ≥ 5,
x1, x2 ≥ 0. ◾
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Example 10.7 (Minimizing cost in sheep nutrition)
A farmer is actively involved in breeding sheep, and the sheep’s diet primarily consists of
various products grown on the farm. To ensure that the sheep receive the required nutrient
constituents, the farmer must consider purchasing additional products, which we will refer
to as Product A and Product B. The essential nutrient constituents (vitamins and protein)
contained in each of these products are detailed in the table below:

Nutrient Nutrient in product Nutrient in product Minimum requirement

Constituents A B of nutrient constituents

X 36 6 108
Y 3 12 36
Z 20 10 100

Product A is priced at JD 20 per unit, while Product B is priced at JD 40 per unit. Formulate
an LP problem that can minimize the total cost and satisfy the requirements.

Solution
Let x1 and x2 be the number of units that must be purchased from products A and B, respec-
tively. This problem can be formulated as the following LP model.

min 20x1 + 40x2
s.t. 36x1 + 6x2 ≥ 108,

3x1 + 12x2 ≥ 36,
20x1 + 10x2 ≥ 100,
x1, x2 ≥ 0. ◾

Example 10.8 (Nurse scheduling at a university hospital)
A university hospital is seeking your assistance in scheduling nurses for their intensive
care unit. In this scenario, it is assumed that the same daily schedule repeats, and the
nurse requirements remain constant. Each workday is divided into four shifts: 12AM–6AM,
6AM–12PM, 12PM–6PM, and 6PM–12AM. Every day, each nurse is assigned to work two
of these shifts. Nurses working two consecutive shifts are compensated at a rate of $20 per
hour, while those working a “split schedule” (e.g., 12AM–6AM and 12PM–6PM) receive $25
per hour. (It is important to note that the shifts 6PM–12AM and 12AM–6AM are considered
consecutive.) The following table indicates the daily nurse requirements for each shift:

Shift Number required
12AM–6AM 5
6AM–12PM 12
12PM–6PM 7
6PM–12AM 10

Formulate an LP that can assist this hospital in determining the optimal nurse scheduling
to meet daily requirements and minimize the total nurse compensation cost.
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Solution
The decision variables are:

x1: The number of nurses that work from 12AM to 12PM;

x2: The number of nurses that work from 6AM to 6PM;

x3: The number of nurses that work from 12PM to 12AM;

x4: The number of nurses that work from 6PM to 6AM;

x5: The number of nurses that work from 12AM to 6AM and 12PM to 6PM;

x6: The number of nurses that work from 6AM to 12PM and 6PM to 12AM.

Minimizing the total cost, we obtain the following LP problem.

min 20x1+20x2+20x3+20x4+ 25x5+25x6
s.t. x1+ x4+ x5 ≥ 5,

x1+ x2+ x6 ≥ 12,
x2+ x3+ x5 ≥ 7,

x3+ x4+ x6 ≥ 10,
x1, x2, x3, x4, x5, x6 ≥ 0. ◾

10.2 The Graphical Method

In this section, we discuss the graphical method for linear optimization problems of two
variables. We will also visually demonstrate different LP cases which may result in different
types of solutions. We start by presenting the following workflow of six steps to find the
extremum (maximum or minimum) solution graphically.

Workflow 10.2 The following steps involved in solving two-dimensional LP problems
graphically:

(i) Graph constraint equations on a rectangular coordinate plane.
(ii) Determine the valid side of each constraint equation.

(iii) Isolate and identify the feasible region.
(iv) Determine the direction of improvement.
(v) Locate the extreme corner.

(vi) Find the optimum solution and the corresponding optimal value.

As a direct application of the above steps, we have the following examples.

Example 10.9 Use the graphical method to solve the following LP problem.

min z = 2x + 5y
s.t. 3x + 2y ≤ 6,

−x + 2y ≤ 4,
x + y ≥ 1,

x, y ≥ 0.
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Solution
Following the steps in Workflow 10.2, we obtain the graphical solution visualized in
Figure 10.1. Note that the given objective function z = 2x + 5y is perpendicular to the
vector c = (2, 5)T for any given scalar z. For simplicity, we represent this using the vector
c in Figure 10.1. Furthermore, decreasing z corresponds to moving the line z = 2x + 5y
in the direction of −c. Therefore, to minimize z, we move the line 2x + 5y = z as much
as possible in the direction of −c, as long as we do not leave the feasible region. From
Figure 10.1, we find that the unique optimal solution is x = (1, 0)T and the optimal value is
z = 2 × 1 + 5 × 0 = 2. ◾

For a system of linear equations Ax = b, we have three possibilities: The system has a
unique solution, it has infinitely many solutions, or it is inconsistent. For an LP, we have
the corresponding three possibilities, but we have one more possibility in addition. An LP
problem may have:

● A unique/finite optimal solution;
● No bounded solution (so the LP is unbounded);
● No feasible solution (so the LP is infeasible);
● Alternative (multiple or infinite number of) optimal solutions.

In the context of graphical method, it is easy to visualize these four different cases, as will
be evident from the following examples.

−1 −0.5 0.5 1 1.5 2 2.5 3 3.5

−1

1

2

3

4

3x + 2y ≤ 6

−x + 2y ≤ 4

x + y ≥ 1
Direction of −c

Direction of c

2x + 5y = 12.25

2x + 5y = 5

2x + 5y = 2

x

y

Figure 10.1 Graphical solution of the LP problem in Example 10.9
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Example 10.10 Use the graphical method to solve the following LP problems.

.

(a) max z = 13x1+23x2
s.t. x1 + 3x2 ≤ 96,

x1 + x2 ≤ 40,
7x1 + 4x2 ≤ 238,

x1, x2 ≥ 0.

(b) max z = x1+ x2
s.t. x1+3x2 ≤ 96,

x1+ x2 ≤ 40,
7x1+4x2 ≤ 238,

x1, x2 ≥ 0.

Solution
(a) The graphical representation of the given LP problem is shown in Figure 10.2, with the

feasible region shaded in cyan. From the graph, we find that the maximum value for z
is 800 at x = (12, 28)T. So, this LP problem has a unique optimal solution.

(b) The graphical representation of the given LP problem is shown in Figure 10.3, with the
feasible region shaded in cyan. Note that the z-line hits the entire line segment between
the points (12, 28) and (26, 14). From the graph, we find that the maximum value for z is
40, and that every point in the line segment between (12, 28) and (26, 14) is an optimal
solution. So, this LP problem has alternative optimal solutions. ◾

Example 10.11 Use the graphical method to solve the following LP problems.
(a) min z = 3x1 + x2

s.t. 5x1 + x2 ≥ 42,
2x1 + x2 ≥ 30,
x1, x2 ≥ 0.

(b) max z = 3x1+x2
s.t. 5x1+x2 ≥ 42,

2x1+x2 ≥ 30,
x1, x2 ≥ 0.

−20 20 40 60 80 100

−20

20

40

60

x1 + 3x2 ≤ 96

x1 + x2 ≤ 407x1 + 4x2 ≤ 238

13x1 + 23x2 = 800

x1

x2

Figure 10.2 Graphical solution of the optimization problem in Example 10.10 (a).
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−20 20 40 60 80 100

−20

20

40

60

x1 + 3x2 ≤ 96

x1 + x2 ≤ 407x1 + 4x2 ≤ 238

Direction of improvement

x1 + x2 = 10

x1 + x2 = 20

x1 + x2 = 30

x1

x2

Figure 10.3 Graphical solution of the optimization problem in Example 10.10 (b).

Solution
(a) In Figure 10.4, we have provided a graphical representation of the LP problem at hand.

The feasible region is distinctly shaded in a cyan color for clarity. Upon inspecting the
graph, we can readily deduce that the lowest attainable value for the objective function
z occurs at 34. This minimal value of z is achieved when the decision variables are set
to x = (4, 22)T.

(b) We provide a visual depiction of the given LP problem in Figure 10.5. Within this
graph, the feasible region is distinctly highlighted in cyan. One can observe that the
z-line, which represents the objective function’s values, can be continuously extended
toward the upper-right corner of the feasible region without any bound or limit. This
observation implies that there is no finite or optimal value of z that can be achieved
within the problem’s constraints. Consequently, we can conclude that this LP problem
is unbounded, emphasizing the open-ended nature of this particular problem. ◾

Example 10.12 Use the graphical method to solve the following LP problems.

(a) max z = 13x1+23x2
s.t. x1+ 3x2 ≤ 96,

x1+ x2 ≥ 30,
7x1+ 4x2 ≤ 238,
x1, x2 ≥ 0.

(b) max z = 13x1+23x2
s.t. x1+ 3x2 ≥ 96,

x1+ x2 ≤ 30,
7x1+ 4x2 ≥ 238,
x1 , x2 ≥ 0.

Solution
(a) The graphical representation of the given LP problem is shown in Figure 10.6, with the

feasible region shaded in cyan. From the graph, we find that the maximum value for z
is 839.52 at x = (19.41, 25.53)T. So, this LP problem has a unique optimal solution.
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−4 −2 2 4 6 8 10 12 14 16 18 20 22

−10

10
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30

40

50

60

5x1 + x2 ≥ 42 2x1 + x2 ≥ 30

3x1 + x2 = 34

x1

x2

Figure 10.4 Graphical solution of the optimization problem in Example 10.11 (a).

−4 −2 2 4 6 8 10 12 14 16 18 20 22

−10

10

20

30

40

50

60

5x1 + x2 ≥ 42 2x1 + x2 ≥ 30

Direction of improvement

x1

x2

Figure 10.5 Graphical solution of the optimization problem in Example 10.11 (b).

(b) The graphical representation of the given LP problem is shown in Figure 10.7. Note
that there are no feasible solutions, that is, there are no points satisfying all constraints.
Therefore, the feasible region is empty, and the LP problem is infeasible. ◾
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−20 20 40 60 80 100

−20

20

40

60

x1 + 3x2 ≤ 96

x1 + x2 ≥ 30 7x1 + 4x2 ≤ 238

13x1 + 23x2 = 839.52

x1

x2

Figure 10.6 Graphical solution of the optimization problem in Example 10.12 (a).

−20 20 40 60 80 100

−20

20

40

60

x1 + 3x2 ≥ 96

x1 + x2 ≤ 30 7x1 + 4x2 ≥ 238 x1

x2

Figure 10.7 Graphical solution of the optimization problem in Example 10.12 (b).

Example 10.13 For the LP problems given in Examples 10.10–10.12, indicate which case
the LP belongs to (i.e., if the LP has a unique optimal solution, has many optimal solu-
tions, is unbounded, or is infeasible), and which type the feasible region is found (i.e., if the
feasible region is bounded, unbounded, or empty).

Solution
The answer is given in Table 10.1. ◾
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Table 10.1 The answer of Example 10.13

LP problem LP case/type Feasible region type

The LP in Example 10.10 (a) Unique optimal solution Bounded
The LP in Example 10.10 (b) Alternative optimal solutions Bounded
The LP in Example 10.11 (a) Unique optimal solution Unbounded
The LP in Example 10.11 (b) Unbounded LP Unbounded
The LP in Example 10.12 (a) Unique optimal solution Bounded
The LP in Example 10.12 (b) Infeasible LP Empty

Example 10.14 Consider the following LP problem.

max y
s.t. −x + y ≤ 1,

3x +2y ≤ 12,
2x +3y ≥ 12,
x, y ≥ 0.

(a) Sketch the feasible region of this LP and solve it using the graphical method.
(b) Generally speaking, if (some of) the variables are restricted to be integer-valued, then

the underlying optimization problem is called an integer (a mixed-integer) program.

−1 1 2 3 4 5 6 7

2

4

6 −x + y ≤ 13x + 2y ≤ 12

2x + 3y ≥ 12

y = 3

x

y

Figure 10.8 Graphical solution of the optimization problem in Example 10.14.
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In this example, assume that x and y are restricted to be integer-valued. Sketch its fea-
sible region and solve it graphically.

Solution

(a) The graphical representation of the LP is shown in Figure 10.8, with the feasible region
shaded in cyan. We find that the optimal solution is 3 at x = (2, 3)T.

(b) Introducing the condition x, y ∈ ℤ changes the feasible region, which is now indicated
by the blue bullet shown in Figure 10.8. The optimal solution remains the same. ◾

10.3 Standard Form Linear Programs

Recall that the general form LP is:

min cTx

s.t. aT
i x ≥ bi, i = 1, 2,… ,m1,

aT
j x ≤ bj, j = 1, 2,… ,m2,

aT
kx = bk, k = 1, 2,… ,m3,

xp ≥ 0, p = 1, 2,… ,m4,

xq ≤ 0, q = 1, 2,… ,m5.

(10.2)

where c, x ∈ ℝn.
Recall also that there is no need to study maximization problems separately because maxi-

mizing cTx subject to some constraints is equivalent to minimizing−cTx subject to the same
constraints. In addition, because:

● aT
i x = bi is equivalent to aT

i x ≤ bi and aT
i x ≥ bi;

● aT
i x ≤ bi can be written as (−ai)Tx ≥ −bi;

● xi ≥ 0 and xi ≤ 0 are special cases of uTx ≥ 0 and (−u)Tx ≥ 0, respectively, where u is a
unit vector in ℝn,

Problem (10.2) can be expressed exclusively in terms of inequality constraints of the form
aT

i x ≥ bi. As a result, Problem (10.2) can be formulated in vector form as

min cTx

s.t. aT
i x ≥ bi, i = 1, 2,… ,m,

(10.3)

or, more compactly, in matrix form as

min cTx

s.t. Ax ≥ b,
(10.4)

where A ∈ ℝm×n is the matrix whose rows are the row vectors aT
1 ,aT

2 ,… ,aT
m and

b = (b1, b2,… , bm)T. We have the following example.
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Example 10.15 The LP problem in Example 10.1 can be written as

min 2x1 − x2 +4x3
s.t. −x1 − x2 −x4 ≥−2,

3x2 − x3 ≥ 5,
−3x2 + x3 ≥−5,

x3+x4 ≥ 3,
x1 ≥ 0,

− x3 ≥ 0.

This can be also written in the matrix form (10.4) with

c =

⎡⎢⎢⎢⎢⎣

2
−1

4
0

⎤⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 −1
0 3 −1 0
0 −3 1 0
0 0 1 1
1 0 0 0
0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
5

−5
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

◾

An LP problem of the form

min cTx
s.t. A x = b,

x ≥ 𝟎
(10.5)

is said to be the standard form LP problem.
We can convert an LP problem to the standard form by eliminating of free variables and

eliminating of inequality constraints as detailed in the following workflow.

Workflow 10.3 We can convert an LP problem to the standard form by following three
steps:

(i) Elimination of free variables: We replace each unrestricted variable xi with x+i − x−i ,
where x+i , x−i ≥ 0.

(ii) Elimination of “≤” constraints: We replace
∑n

j=1 aijxj ≤ bi with
∑n

j=1 aijxj + si = bi,
where si ≥ 0 is called a slack variable (see also Definition 10.11).

(iii) Elimination of “≥” constraints: We replace
∑n

j=1 aijxj ≥ bi with
∑n

j=1 aijxj − ei = bi,
where ei ≥ 0 is called an excess variable (see also Definition 10.11).

Example 10.16 The LP problem:

min 3x1 + 7x2 is equivalent to min 3x1 + 7x+2 − 7x−2
s.t. x1 + x2 ≥ 3, standard form s.t. x1 + x+2 − x−2 − x3 = 3,

5x1 + 3x2 = 19, LP problem: 5x1 + 3x+2 − 3x−2 = 19,
x1 ≥ 0, (letting x3 = s3) x1, x+2 , x−2 , x3 ≥ 0.

For instance, given the feasible solution (x1, x2) = (2, 3) to the original problem, we obtain
the feasible solution (x1, x+2 , x−2 , x3) = (2, 3, 0, 2) to the standard form problem. In Exercise
10.12, we seek the point (x1, x2) for the original problem given the feasible solution
(x1, x+2 , x−2 , x3) = (4, 0, 1∕3, 2∕3) to the standard form problem. ◾
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10.4 Geometry of Linear Programming

The graphical method for linear optimization problems indicates that an optimal solution
to an LP lies at a “corner” of a polyhedron. A vertex, an extreme point, and a basic feasible
solution all describe corners of a polyhedron, with the first two being geometric definitions.

10.4.1 Extreme Points, Vertices, and Basic Feasible Solutions

In this part, we define a vertex, an extreme point, and a basic feasible solution of a given
nonempty polyhedron.

Definition 10.2 Let P be a nonempty polyhedron. A vector x ∈ P is called a vertex of P if
there is some c such that cTx < cTy for all y ∈ P different from x.

From Definition 10.2, we observe that x is a vertex of a polyhedron P if it is the optimal
solution of some linear program with P as the feasible region. In Figure 10.9, we show two
polyhedra. In each polyhedron P, the hyperplane {y ∶ cTy = cT

𝒗} on the right-hand side
touches P at a single point, 𝒗, so the point 𝒗 is a vertex. In contrast, the point 𝒘 is not a
vertex since there is no hyperplane intersecting solely at 𝒘 within P.

Definition 10.3 Let P be a nonempty polyhedron. A vector x ∈ P is called an extreme
point of P if there are no y, z ∈ P and a scalar 𝜆 ∈ (0, 1) such that x = 𝜆y + (1 − 𝜆)z.

In Figure 10.10, we show three polyhedra. In each polyhedron, the vectors𝒗i’s are extreme
points, and the vector 𝒘 is not an extreme point because 𝒘 is a convex combination of 𝒗1
and 𝒗2.

Definitions 10.2 and 10.3 are geometric, and hence intuitive. We need an equivalent def-
inition that is algebraic, so that we can do computations. Before this, we need an interme-
diate concept for connecting geometry and algebra.

vw v

w

Figure 10.9 Vertices (𝒗’s) versus nonvertices (𝒘’s).

x1

x2

v 2

v 1

w

o x3

x1

x2v 1

v 3

v 2

w

o

v 1

v 3

v 2

v 4

w

Figure 10.10 Extreme points (𝒗i ’s) versus nonextreme points (𝒘’s).
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Definition 10.4 If a vertex x★ satisfies an inequality aTx ≥ b (or aTx ≤ b) as an equality,
that is, aTx★ = b, then we say that this inequality is active or binding at x★.

If P ⊂ ℝn is a polyhedron defined by linear equality and inequality constraints, then x★ ∈
ℝn may or may not be feasible with respect the constraints. Now, if x★ ∈ ℝn is feasible (i.e.,
x★ ∈ P; satisfying all the constraints), then from Definition 10.4 all the equality constraints
are active at x★.

We have the following example to more illustrate Definition 10.4.

Example 10.17 The polyhedron shown in the middle of Figure 10.10 is expressed as

P = {(x1, x2, x3)T ∶ x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}. (10.6)

There are three constraints that are binding at each of the points 𝒗1,𝒗2, and 𝒗3. Namely the
constraints x1 + x2 + x3 = 1, x2 = 0 and x3 = 0 are active at𝒗1, the constraints x1 + x2 + x3 = 1,
x1 = 0 and x3 = 0 are active at 𝒗2, and the constraints x1 + x2 + x3 = 1, x1 = 0 and x2 = 0
are active at 𝒗3. Also, at the point 𝒘, there are two constraints that are binding, which are
x1 + x2 + x3 = 1 and x3 = 0. ◾

If there are n constraints that are binding at a vector x★ ∈ ℝn, then x★ satisfies a system
of n linear equations in n unknowns. In view of Theorem 3.13, this system has a unique
solution if and only if these n equations are linearly independent.

Now, we are ready to introduce the algebraic definition of a corner point.

Definition 10.5 Let P be a polyhedron defined by linear equality and inequality con-
straints, and x★ ∈ ℝn. We say that the vector

(a) x★ is a basic solution if the following two statements hold:
(i) All equality constraints are active.

(ii) Out of the constraints that are active at x★, there are n of them that are linearly
independent.

(b) x★ is a basic feasible solution if it is a basic solution, and satisfies all of the constraints
(i.e., x★ ∈ P).

The following two examples illustrate Definition 10.5.

Example 10.18
x2

x1

x3

1

1

1

Figure 10.11 The
polyhedron given in
Example 10.18 with
four corners.

In the polyhedron depicted in the middle of Figure 10.10, as repre-
sented in (10.6), we can identify the points 𝒗i’s as basic feasible solu-
tions. However, point o fails to meet the equality constraint x1 + x2 +
x3 = 1, making it ineligible as a basic solution. On the other hand,
point 𝒘 is feasible but does not qualify as basic according to Defi-
nition 10.5. Nevertheless, if we replace the equality constraint x1 +
x2 + x3 = 1 with the inequality constraints x1 + x2 + x3 ≤ 1, then o
transforms into a basic feasible solution, as shown in Figure 10.11. ◾
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−1 1 2 3

−1

1

2

3

3x + 2y ≤ 6

−x + 2y ≤ 4

x + y ≥ 1

a

b

c

d

e

f

g

x

y

Figure 10.12 Basic solutions and basic feasible solutions.

Example 10.19 In Figure 10.12, the points a,b, c,d, e, f , and g all represent basic solu-
tions since they each have two linearly independent constraints that are active. Specifically,
points a,b,d, e, and f are considered basic feasible solutions as they fulfill all imposed
constraints. ◾

We give, without proof, the following result in this context. For a proof, see, for example,
Bertsimas and Tsitsiklis (1997).

Theorem 10.1 Let x★ be a point in a nonempty polyhedron P. Then the following are
equivalent:

(a) x★ is a vertex.
(b) x★ is an extreme point.
(c) x★ is a basic feasible solution.

Definition 10.6 Two distinct basic solutions to a set of linear constraints in ℝn are called
adjacent if there are n − 1 linearly independent constraints that are binding at both of them.

As an example, in Figure 10.12, the points a and g are adjacent to the point b, and the
points d and e are adjacent to f .

In the subsequent development, we will see that we find an optimal corner point of an LP
problem by moving from one basic feasible solution to an adjacent basic feasible solution
that improves the objective function value, and so on, repeating this step until we cannot
go to an adjacent basic feasible solution that improves the objective function value.

Let n and m be positive integers such that m ≤ n. Let also b ∈ ℝm and A ∈ ℝm×n with
rank(A) = m (i.e., A has a full-row rank). The set P = {x ∈ ℝn ∶ Ax = b, x ≥ 𝟎} is called a
polyhedron in standard form. Note that the number of equality constraints in P is m.
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10.4.2 Finding Basic Feasible Solutions

The question that arises now is, how to find basic solutions of polyhedra in standard
form? The system Ax = b gives m linearly independent constraints as rank(A) = m.
Consequently, we need n − m more binding constraints from x ≥ 𝟎 (this is n nonnegativity
constraints: x1 ≥ 0, x2 ≥ 0,… , xn ≥ 0). Which n − m (out of those n) constraints to select
for our purpose? We cannot choose any (n − m) xi’s. Theorem 10.2 helps in this task. Before
this theorem, we give some definitions.

As a matter of notation, we use “;” for adjoining vectors and matrices in a column, and
use “,” or “:” for adjoining them in a row.

We write A as A = [a1 ∶ a2 ∶ · · · ∶ an]where aj is the jth column of A. Since rank(A) = m,
there exists an invertible matrix

AB ≜ [aB1
∶ aB2

∶ · · · ∶ aBm
] ∈ ℝm×m. (10.7)

Let B ≜ {B1,B2,… ,Bm} and N ≜ {1, 2,… ,n} − B. We can permute the columns of A so that
A = [AB ∶ AN ]. We can write the system Ax = b as ABxB + AN xN = b where x = (xB; xN )
(equivalently, xT = (xT

B, xT
N )).

Definition 10.7 The m × m nonsingular matrix AB is called a basis matrix. The vector xB
is called a basic solution (also called the vector of basic variables). The vector xN is called a
nonbasic solution (also called the vector of nonbasic variables).

We are now ready to state the following theorem which will be given without proof. For
a proof, see, for example, Bertsimas and Tsitsiklis (1997).

Theorem 10.2 Let b ∈ ℝm and A ∈ ℝm×n have linearly independent rows. Consider the
constraints Ax = b and x ≥ 𝟎. A vector x ∈ ℝn is a basic solution if and only if we have

(a) The columns of AB are linearly independent.
(b) xN = 𝟎.

Since AB is nonsingular, we can solve the system of m linear equations Ax = b for xB.
The solution is given by xN = 𝟎 and xB = A−1

B b. The three-step procedure in the following
workflow, followed by an example, will teach us how to construct such basic solutions.

Workflow 10.4 We construct all basic solutions to a standard form polyhedron
P = {x ∈ ℝn ∶ Ax = b, x ≥ 𝟎} by following three steps:

(i) Choose m linearly independent columns aB(1),aB(2),… ,aB(m).
(ii) Set xN = 𝟎.

(iii) Calculate xB = A−1
B b. If xB ≥ 𝟎, then the vector x = (xB; xN ) is a basic feasible solution.

Otherwise, x = (xB; xN ) is a basic solution.

It is clear that the maximum number of basic feasible solutions is
(

n
m

)
. Note that, gener-

ally, not all of
(

n
m

)
choices of m columns may produce a basis (i.e., a nonsingular matrix AB).
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Hence, the number of basic solutions may be smaller than
(

n
m

)
. Note also that not all of

these
(

n
m

)
bases may lead to basic feasible solutions.

In the following example, which is due to Krishnamoorthy (2023a), we have that n = 5
and m = 3, and that each of

(
5
3

)
= 10 choices produces a basic solution.

Example 10.20 Consider the linear system

x1+ x2 ≥ 2,
3x1+ x2 ≥ 4,
3x1+2x2 ≤ 10,
x1, x2 ≥ 0.

(10.8)

The resulting polyhedron is shown in Figure 10.13. In the standard form, we have

x1+ x2− x3 = 2,
3x1+ x2 −x4 = 4,
3x1+2x2 + x5 = 10,

x1, x2, x3, x4, x5 ≥ 0.

Consequently, the following arrays draw the resulting polyhedron.

A =
⎡⎢⎢⎣

1 1 −1 0 0
3 1 0 −1 0
3 2 0 0 1

⎤⎥⎥⎦ , and b =
⎡⎢⎢⎣

2
4

10

⎤⎥⎥⎦ .
The columns of A are

a1 =
⎡⎢⎢⎣
1
3
3

⎤⎥⎥⎦ , a2 =
⎡⎢⎢⎣
1
1
2

⎤⎥⎥⎦ , a3 =
⎡⎢⎢⎣
−1
0
0

⎤⎥⎥⎦ , a4 =
⎡⎢⎢⎣

0
−1
0

⎤⎥⎥⎦ , and a5 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ .

−1 1 2 3 4 5

−2

2

4

6

x1 + x2 ≥ 2

3x1 + x2 ≥ 4

3x1 + 2x2 ≤ 10

3x1 ≤ 10

v 4

v 5

v 6

v 2

v 3

v 1

x1

x2

Figure 10.13 The polyhedron in Example 10.20.
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Choosing B = {1, 2, 3} (hence N = {4, 5}) gives

AB =
⎡⎢⎢⎣

1 1 −1
3 1 0
3 2 0

⎤⎥⎥⎦ , and det (B) = −3 ≠ 0 (hence B is invertible).

Let xN = (x4; x5) = (0; 0). Finding A−1
B and calculating xB = A−1

B b, we get

xB =
⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2∕3

6
10∕3

⎤⎥⎥⎦ .
This point is a basic solution, but it is not a basic feasible solution because not all entries

are nonnegative. This point corresponds to the vertex 𝒗1 = (−2∕3; 6).
Choosing B = {2, 3, 4} (hence N = {1, 5}) gives

AB =
⎡⎢⎢⎣

1 −1 0
1 0 −1
2 0 0

⎤⎥⎥⎦ , and det (B) = 2 ≠ 0 (hence B is invertible).

Let xN = (x1; x5) = (0; 0). Finding A−1
B and calculating xB = A−1

B b, we get

xB =
⎡⎢⎢⎣

x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5
3
1

⎤⎥⎥⎦ .
Thus x = (0; 5; 3; 1; 0). This point is a basic feasible solution because all the entries are
nonnegative. This point corresponds to the vertex 𝒗2 = (0; 5). Table 10.2 summarizes the
correspondences between the basic feasible solutions in the standard form polyhedron and
the vertices visualized in Figure 10.13. ◾

We want to emphasize that we can identify the basic feasible solution within the stan-
dard form polyhedron for each corner point through a straightforward examination. In
simpler terms, there is no need to systematically go through all possible combinations, such
as the

(
n
m

)
choices for bases. Take, for instance, Example 10.20, where at vertex 𝒗5, the con-

straints x1 + x2 ≥ 2 and 3x1 + x2 ≥ 4 are active, while 3x1 + 2x2 ≤ 10 is not. Consequently,

Table 10.2 Correspondences between the basic feasible solutions in the standard form
polyhedron and the vertices visualized in Figure 10.13

Vertex B det (AB) The variable x Basic feasible solution?

𝒗1 {1, 2, 3} −3 (−2∕3; 6; 10∕3; 0; 0) ×
𝒗2 {2, 3, 4} 2 (0; 5; 3; 1; 0) ✓
𝒗3 {1, 3, 4} 3 (10∕3; 0; 4∕3; 6; 0) ✓
𝒗4 {1, 4, 5} −1 (2; 0; 0; 2; 4) ✓
𝒗5 {1, 2, 5} −2 (1; 1; 0; 0; 5) ✓
𝒗6 {2, 3, 5} 1 (0; 4; 2; 0; 2) ✓
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in the corresponding basic feasible solutions within the standard form polyhedron, we
have x3 = x4 = 0 and x5 > 0. Additionally, both x1 and x2 are strictly positive. Therefore,
xB = (x1; x2; x5) forms the corresponding basis.

Likewise, consider vertex 𝒗2 where the constraints x1 + x2 ≥ 2 and 3x1 + x2 ≥ 4 are not
binding, but the constraints 3x1 + 2x2 ≤ 10 and x1 ≥ 0 are active. Consequently, in the cor-
responding basic feasible solutions within the standard form polyhedron, we find that x3
and x4 are both greater than 0, while x5 equals 0. Additionally, it is worth noting that x5 is
strictly positive. Therefore, xB = (x2; x3; x4) forms the corresponding basis.

10.4.2.1 Degeneracy
At a basic solution, we must have n linearly independent active constraints. However, since
no more than n constraints can be linearly independent in an nth-dimensional space, it is
possible for more than n active constraints to exist at a basic solution. In such cases, this
basic solution is referred to as degenerate.

Definition 10.8 A basic solution x ∈ ℝn is called degenerate if more than n of the con-
straints are active at x. In a nonempty polyhedron in standard form with A ∈ ℝm×n, x is a
degenerate basic solution if more than n − m of the components of x are zero.

Example 10.21 (Example 10.20 revisited)
Adding the constraint x1 ≤ 10∕3 to System (10.8) results in three active constraints at 𝒗3 (see
Figure 10.13). Therefore, 𝒗3 qualifies as a degenerate basic feasible solution. In the standard
form, this constraint becomes x1 + x6 = 10∕3, where x6 represents the slack variable for the
constraint x1 ≤ 10∕3. In this case, with n = 6 and m = 4, and with x2 = x5 = x6 = 0, we have
more than n − m = 2 components of x equal to zero. ◾

Degeneracy might not pose significant issues in small-scale problems, but it can introduce
inefficiencies when dealing with large LP instances. In typical algorithms, the goal is to
transition from one basic feasible solution to another nearby solution that either improves
the objective function or, at the very least, maintains the current value. However, in the
presence of degeneracy, the algorithm may cycle through several degenerate basic feasible
solutions before finally reaching a vertex that genuinely enhances the objective function
value. The extent of degeneracy largely hinges on how we represent the polyhedron. For
instance, in Example 10.21, we could eliminate the constraint x1 ≤ 10∕3 without altering
the polyhedron, thereby resolving the degeneracy issue at 𝒗3. Additionally, if permissible,
we could circumvent degeneracy by making minor adjustments to certain constraints, such
as replacing x1 ≤ 10∕3 with x1 ≤ 10∕3 + 0.001. However, the feasibility of such modifica-
tions heavily relies on the specific problem application.

10.4.3 Pointedness

A polyhedron is pointed if it contains no lines (a line is a straight one-dimensional figure
formed when two points are connected with minimum distance between them, and both
the ends extended to infinity). Figure 10.14 shows two polyhedra, one of them (namely P1)



COPYRIG
HTED M

ATERIA
L

�

� �

�

318 10 Linear Programming

x1

x2

1

–1

–1

(a) (b)

x1

x2

1

–1

P1 = {x ϵ R 2 : −1 ≤ x2 ≤ 1, x1 ≥ −1} : −1 ≤ x2 ≤ 1}P2 = {x ϵ R 2

Figure 10.14 Pointed polyhedron (a) versus nonpointed polyhedron (b).

is pointed but the other (namely P2) is nonpointed. Note that every nonempty polyhedron
subset of a pointed polyhedron is pointed.

A good question to ask: Is every nonempty polyhedron pointed? We give the following
theorem without proof. For a proof, see, for example, Bertsimas and Tsitsiklis (1997).

Theorem 10.3 Assume that the polyhedron P = {x ∈ ℝn ∶ aT
i x ≥ bi, i = 1,… ,m} is

nonempty. Then the following are equivalent:

(a) The polyhedron P is pointed.
(b) The polyhedron P has at least one extreme point.
(c) There exist n vectors out of the family a1,… ,am, which are linearly independent.

Note that, from Theorem 10.3, a bounded polyhedron is pointed. Similarly, the nonneg-
ative orthant cone ℝn

+ ≜ {x ∈ ℝn ∶ x ≥ 𝟎} is pointed. Since any standard form polyhedron
is a subset of the nonnegative orthant cone, it is pointed too. The following two corollaries
are now immediate.

Corollary 10.1 Every nonempty bounded polyhedron has at least one basic feasible
solution.

Corollary 10.2 Every nonempty polyhedron in standard form has at least one basic fea-
sible solution.

Note also that, from Theorem 10.3, every nonempty polyhedron P = {x ∈ ℝn ∶ Ax ≥ b},
with A ∈ ℝm×n and m < n, cannot have any basic feasible solution.

10.4.4 Optimality

In the above part, we have established the conditions for the existence of extreme points.
In this part, we will see that if a nonempty polyhedron P has no corner points, then the
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LP problem of minimizing a linear objective function over P cannot have a unique optimal
solution. The following theorem presents the contrapositive of this statement.

Theorem 10.4 Consider the LP problem over a polyhedron P. If P has at least one extreme
point and there exists an optimal solution, then there exists an extreme point of P which is
optimal.

Proof: Let P = {x ∈ ℝn ∶ Ax ≥ b}, and 𝜈 be the optimal value of the cost cTx which we
have assumed to be attained. Then Popt ≜ {x ∈ ℝn ∶ Ax ≥ b, cTx = 𝜈} contains all optimal
solutions in P. By assumption, Popt is a nonempty polyhedron. From Theorem 10.3, P is
pointed. Since Popt ⊂ P, Popt is pointed too. Using Theorem 10.3 again, Popt has an extreme
point, say x★. Since x★ ∈ Popt, we have cTx★ = 𝜈, that is, x★ is optimal. To complete the
proof, it remains to show that x★ is an extreme point of P.

Suppose, in the contrary, that x★ is not an extreme point of P. Then, there exist y, z ∈ P
and a scalar 𝜆 ∈ (0, 1) such that x★ = 𝜆y + (1 − 𝜆)z. Consequently, 𝜈 = cTx★ = 𝜆cTy + (1 −
𝜆)cTz. Furthermore, since 𝜈 is the optimal cost, cTy ≥ 𝜈 and cTz ≥ 𝜈. It follows that cTy =
cTz = 𝜈, and therefore y, z ∈ Popt. But this contradicts the fact that x★ is an extreme point
of Popt. Thus, x★ is an extreme point of P. The proof is complete. ◾

A more general result than that in Theorem 10.4 is stated in the following theorem, which
will be given without proof. For a proof, see, for example, Bertsimas and Tsitsiklis (1997).

Theorem 10.5 Consider the LP problem over a polyhedron P. If P has at least one extreme
point, then either the optimal cost is equal to−∞, or there exists an extreme point of P which
is optimal.

Theorems 10.4 and 10.5 specifically address polyhedra under the condition that they pos-
sess at least one extreme point. But what about polyhedra that don not satisfy this condition?
Interestingly, any LP problem, whether dealing with a polyhedron with or without extreme
points, can be converted into an equivalent problem in standard form. This transformation
enables us to apply Theorem 10.5, as highlighted in Corollary 10.2. This insight leads to the
following corollary.

Corollary 10.3 Consider the linear minimization problem over a nonempty poly-
hedron P. Then either the optimal cost is equal to −∞, or there exists an optimal
solution.

Generally, Corollary 10.3 does not hold for nonlinear programming problems. For
example, the nonlinear optimization problem

min 1∕x
s.t. x ≥ 1,

has no optimal solution, but the optimal cost is not −∞.
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10.5 The Simplex Method

We have introduced linear optimization problems and studied its geometry. Now, we are
ready to introduce the simplex method. The word “simplex” is a general term of LP feasible
region. Simplex method is used to solve LPs with any number of variables and constraints.
The idea behind this method is to move from one basic feasible solution to an adjacent basic
feasible solution so that the objective function value improves.

10.5.1 Simplex Method for Maximization

We begin by outlining the simplex method for solving LP problems with a focus on maxi-
mization.

The six-step procedure in Workflow 10.5, followed by Example 10.22, will teach us how
to apply the simplex method for solving the maximization problem. First, we need the fol-
lowing definition.

Definition 10.9 Let A be an m × n matrix. Consider the standard form LP:

max z = cTx
s.t. Ax = b,

x ≥ 𝟎.
(10.9)

The corresponding canonical form is linear system of (m + 1) equations:

z − cTx = 0,
Ax = b.

For example, the canonical form corresponding to the standard form LP:

max z = 2x1 + 3x2

s.t. x1 + 2x2 = 4,
2x1 + x2 + x3 = 8,
x1, x2, x3 ≥ 0,

is the system

z − 2x1 − 3x2 = 0,
x1 + 2x2 = 4,

2x1 + x2 + x3 = 8.

Workflow 10.5 (The simplex method) We solve a maximization LP problem by fol-
lowing five steps:

(i) Write the given LP in the standard form.
(ii) Convert the standard form to a canonical form.

(iii) Find a basic feasible solution for the canonical form.
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(iv) If the current basic feasible solution is optimal, stop. If not, find which basic variable
must become nonbasic and which nonbasic variable must become basic, and apply
elementary row operations in order to move to an adjacent basic feasible solution with
a higher value for the objective function.

(v) Go to Step (i𝑣).

For guidance on determining which variables should change from basic to nonbasic (or
vice versa) and on assessing the optimality, refer to Remarks 10.1–10.3 below. The examples
in this section, except the last two, are due to Krishnamoorthy (2023b).

Example 10.22 Use the simplex method to solve the following maximization LP.

max z = 2x1 + 3x2
s.t. x1 + 2x2 ≤ 6,

2x1 + x2 ≤ 8,
x1, x2 ≥ 0.

(10.10)

Solution
We apply the steps in Workflow 10.5. Problem (10.10) in standard form is written as

max z = 2x1 + 3x2
s.t. x1 + 2x2 + s1 = 6,

2x1 + x2 + s2 = 8,
x1, x2, s1, s2 ≥ 0.

(10.11)

Problem (10.11) in the canonical form is written as

z − 2x1 − 3x2 = 0,
x1 + 2x2 + s1 = 6,

2x1 + x2 + s2 = 8.
(10.12)

The canonical variables, which correspond to the unit columns, are the variables z, s1 and s2.
Let BV denote the set of the basic variables. We select BV = {z, s1, s2}. Generally, we have|BV| = m + 1 (m = 2 in this example), and we choose z ∈ BV always. Therefore, the BV
contains the variable z plus m canonical variables. Let NBV denote the set of the nonbasic
variables. Then NBV = {x1, x2}.

Fix x1 = x2 = 0. System (10.12) now reads z = 0, s1 = 6, and s2 = 8, which are a basic fea-
sible solution.

Now, let us determine if the current basic feasible solution is optimal. An optimal
solution is reached when we cannot further improve the value of z by increasing the value
of any nonbasic variable (starting from zero). Currently, z = 2x1 + 3x2 = 0 as x1 = x2 = 0
(NBV = {x1, x2}). Increasing x1 from 0 to 1 increases z from 0 to 2, while increasing x2
from 0 to 1 increases z from 0 to 3 (we are increasing one variable at a time, while keeping
the other nonbasic variable fixed at zero). It is more beneficial to increase x2 here than
x1. Generally, we select the nonbasic variable with the largest positive coefficient in the
z expression to enter the basis. In the canonical form, we choose the nonbasic variable
with the most negative coefficient in row-0 to enter the basis. The following remark
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summarizes this discussion. We will move forward in solving Example 10.22 after this
remark. ◾

Remark 10.1 (Criterion for choosing the entering variable in maximization)
The entering variable in a maximization LP problem is the nonbasic variable having the
most negative coefficient in the z-row.

Considering Remark 10.1, we designate x2 as the entering variable in this step.
With the entering variable identified, our next task is to find a new neighboring basic

feasible solution by also determining a leaving variable. Note that we cannot increase the
entering variable, x2, without bounds. As x2 increases, s1 or s2 may decrease, and we must
ensure that they remain nonnegative to maintain feasibility.

From row 1 and row 2, with x1 = 0, we get

Row 1: 2x2 + s1 = 6, which implies s1 = 6 − 2x2 ≥ 0,

Row 2: x2 + s2 = 8, which implies s2 = 8 − x2 ≥ 0.

Note that s1 and s2 need to be nonnegative for feasibility. To keep s1 ≥ 0, we cannot increase
x2 beyond 6/2=3. To keep s2 ≥ 0, we cannot increase x2 beyond 8/1=8.

Thus, we let x2 = 3 which makes s1 = 0. In this step, x2 is called the entering variable, and
s1 is called the leaving variable.

The test in the following remark summarizes the above discussion. Applying this test
guarantees that the basic solution remains feasible. We will move forward in solving
Example 10.22 after this remark.

Remark 10.2 (Minimum ratio test for choosing the leaving variable) For each
constraint row that has a positive coefficient1 for the entering variable, we compute the
ratio:

Ratio =
Right-hand side of the row

Coefficient of entering variable in the row
.

Among all these ratios, the nonbasic variable with smallest nonnegative ratio is the leaving
variable.

Note that the smallest among all the ratios computed in Remark 10.2 is the largest value
that the entering variable can take. Going back to Example 10.22, the ratios are:

Row 1: 6
2
= 3; ← The winner!

Row 2: 8
1
= 8.

Therefore, s1 leaves the basis, that is, it becomes nonbasic, and the entering variable x2 takes
its place.

1 We do not consider the row(s) with negative coefficients.
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We use elementary row operations in order to make the entering variable basic in the row
that the minimum ratio test meets the requirement outlined in Remark 10.2.

R0 ∶ z − 2x1−3x2 = 0,

R1 ∶ x1+2x2 + s1 = 6,

R2 ∶ 2x1+ x2 + s2 = 8;
3
2

R1 + R0 → R0 ∶ z − 1
2

x1 + 3
2

s1 = 9,
1
2

R1 → R1 ∶ 1
2

x1+ x2 +
1
2

s1 = 3,
−1
2

R1 + R2 → R2 ∶ 3
2

x1 − 1
2

s1 + s2 = 5;

R0 +
1
3

R2 → R0 ∶ z + 4
3

s1 +
1
3

s2 =
32
3
,

R1 −
1
3

R2 → R1 ∶ x2 +
2
3

s1 −
1
3

s2 =
4
3
,

2
3

R2 → R2 ∶ x1 − 1
3

s1 +
2
3

s2 =
10
3
.

We will complete the resolution of Example 10.22 once we address the following remark.

Remark 10.3 (Criterion for optimality in maximization) In a maximization LP
problem, the optimum is reached at the iteration where all the z-row coefficient of the
non-basic variables are nonnegative.

Note that in our example we cannot improve the value of z anymore (by making s1 or s2
basic). Hence, we have an optimal solution. The optimal solution is (x1; x2) = (10∕3; 4∕3)
with the optimal value z = 32∕3. ◾

10.5.2 The Full Tableau Method

The full tableau method provides a more convenient approach for conducting the necessary
calculations required by the simplex method.

10.5.2.1 Simplex Tableau for Maximization
If we have a maximization problem, the structure of the simplex tableau is as follows:

z x rhs

1 cT − cTBA−1
B A −cTBA−1

B b

A−1
B A A−1

B b = xB

Here AB is defined in (10.7) and cB is the cost vector corresponding to the basic variables. We
keep maintaining and updating the above table till we reach the optimality. Example 10.23
resolves Example 10.22 using the simplex tableau method.
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Example 10.23 (Example 10.22 revisited)
Use the simplex tableau method to solve the following maximization problem.

max z = 2x1 + 3x2
s.t. x1 + 2x2 ≤ 6,

2x1 + x2 ≤ 8,
x1, x2 ≥ 0.

Solution
After introducing slack variables, we obtain the standard form problem given in (10.11).
Note that x = (0, 0, 6, 8) is a basic feasible solution. Hence, we have the following initial
tableau:

z x1 x2 s1 s2 rhs
1 −2 −3 0 0 0
0 1 2 1 0 6
0 2 1 0 1 8

= s1
= s2

Since we are maximizing the objective function, we select a nonbasic variable with the
greatest positive reduced cost to be the one that enters the basis. Indicating the pivot element
with a circled number, we obtain the following tableau:

z x1 x2 s1 s2 rhs
1 −1⁄ 2 0 3⁄ 2 0 9
0 1⁄ 2 1 1⁄ 2 0 3
0 3/2 0 −1⁄ 2 1 5

= x2
= s2

Note that we brought x2 into the basis and s1 exited. We then bring x1 into the basis; s2
exits and we obtain the following tableau:

z x1 x2 s1 s2 rhs
1 0 0 4 ⁄ 3 1 ⁄ 3 32 ⁄3
0 0 1 2 ⁄ 3 −1 ⁄ 3 4 ⁄3
0 1 0 −1 ⁄ 3 2 ⁄ 3 10 ⁄3

= z
= x2
= x1

The reduced costs in the zeroth row of the tableau are all nonnegative, so the current
basic feasible solution is optimal. In terms of the original variables x1 and x2, this solution
is x = (10∕3; 4∕3). The optimal value is z = 32∕3.

The above series of tableaux can be combined in one single table as follows:
EROs z x1 x2 s1 s2 rhs MR

R0 ∶ 1 −2 −3 0 0 0
R1 ∶ 0 1 2 1 0 6 6∕2
R2 ∶ 0 2 1 0 1 8 8∕1

R0 +
3
2

R1 → R0 ∶ 1 −1∕2 0 3∕2 0 9
1
2

R1 → R1 ∶ 0 1∕2 1 1∕2 0 3 3∕0.5
−1
2

R1 + R2 → R2 ∶ 0 3/2 0 −1∕2 1 5 5∕1.5

R0 +
1
3

R2 → R0 ∶ 1 0 0 4∕3 1∕3 32∕3
R1 −

1
3

R2 → R1 ∶ 0 0 1 2∕3 −1∕3 4∕3 Optimal
2
3

R2 → R2 ∶ 0 1 0 −1∕3 2∕3 10∕3 tableau!
◾
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Example 10.24 Use the simplex method to solve the following LP.

max z = 2x1 − x2 + x3
s.t. 3x1 + x2 + x3 ≤ 60, (adding s1)

x1 − x2 + 2x3 ≤ 10, (adding s2)
x1 + x2 − x3 ≤ 20, (adding s3)
x1, x2, x3 ≥ 0.

Solution
We have the following tableaux:

EROs z x1 x2 x3 s1 s2 s3 rhs MR
R0 ∶ 1 −2 1 −1 0 0 0 0
R1 ∶ 0 3 1 1 1 0 0 60 60∕3
R2 ∶ 0 1 −1 2 0 1 0 10 10∕1
R3 ∶ 0 1 1 −1 0 0 1 20 20∕1

R0 + 2R2 → R0 ∶ 1 0 −1 3 0 2 0 20
R1 − 3R2 → R1 ∶ 0 0 4 −5 1 −3 0 30 30∕4

R2 → R2 ∶ 0 1 −1 2 0 1 0 10
−R2 + R3 → R3 ∶ 0 0 2 −3 0 −1 1 10 10∕2
R0 +

1
2

R3 → R0 ∶ 1 0 0 3∕2 0 3∕2 1∕2 25
R1 − 2R3 → R1 ∶ 0 0 0 1 1 −1 −2 10 Optimal
R2 +

1
2

R3 → R2 ∶ 0 1 0 1∕2 0 1∕2 1∕2 15 tableau!
1
2

R3 → R3 ∶ 0 0 1 −3∕2 0 −1∕2 1∕2 5

The optimal solution is given by (x1; x2; x3) = (15; 5; 0), and the optimal value is z = 25.
◾

10.5.2.2 Detecting the Existence of Alternative Optimal Solutions
The simplex method can tell if alternative optimal solutions (i.e., infinitely many solutions)
exist. The following remark signifies a pivotal insight into LP: A condition that opens the
door to alternative optimal solutions that yield the same optimal value for the LP problem.

Remark 10.4 If the coefficient of a nonbasic variable in the zeroth row of the tableau is
zero, then the LP problem has alternative optimal solutions.

We have the following example.

Example 10.25 Use the simplex tableau method to solve the following maximization
problem.

max z = 4x1 + x2
s.t. 8x1 + 2x2 ≤ 16, (adding s1)

5x1 + 2x2 ≤ 12, (adding s2)
x1, x2 ≥ 0.
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Solution
We have the following tableaux:

EROs z x1 x2 s1 s2 rhs MR

R0 ∶ 1 −4 −1 0 0 0
R1 ∶ 0 8 2 1 0 16 16∕8 = 2
R2 ∶ 0 5 2 0 1 12 12∕5 = 2.4

R0 +
1
2

R1 → R0 ∶ 1 0 0 1∕2 0 8
1
8

R1 → R1 ∶ 0 1 1∕4 1∕8 0 2 This tableau
−5
8

R1 + R2 → R2 ∶ 0 0 3/4 −5∕8 1 2 is optimal!

R0 → R0 ∶ 1 0 0 1∕2 0 8
R1 −

1
3

R2 → R1 ∶ 0 1 0 1∕3 −1∕3 4∕3 This tableau
4
3

R2 → R2 ∶ 0 0 1 −5∕6 4∕3 8∕3 is also optimal!

In view of Remark 10.4, we have alternative optimal solutions. An optimal solution is
given by (x1; x2) = (2; 0). Another optimal solution is given by (x1; x2) = (4∕3; 8∕3). The opti-
mal value is z = 8. As an exercise for the reader, use the graphical method to reach the same
conclusion. ◾

10.5.2.3 Detecting Unboundedness
The simplex method can be used to detect the unboundedness. The following remark tells
us when we have an unbounded problem.

Remark 10.5 If there is no candidate for the minimum ratio test, then the LP problem is
unbounded.

Example 10.26 Use the simplex tableau method to solve the following maximization
problem.

max z = 2x2
s.t. x1 − x2 ≤ 4, (adding s1)

−x1 + x2 ≤ 1, (adding s2)
x1, x2 ≥ 0.

Solution
We have the following tableaux:

EROs z x1 x2 s1 s2 rhs MR
R0 ∶ 1 0 −2 0 0 0
R1 ∶ 0 1 −1 1 0 4 16∕8 = 2
R2 ∶ 0 −1 1 0 1 1 12∕5 = 2.4

R0 + 2R2 → R0 ∶ 1 −2 0 0 2 2
R1 + R2 → R1 ∶ 0 0 0 1 1 5 The LP is

R2 → R2 ∶ 0 −1 1 0 1 1 unbounded!
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Note that there is no candidate for the minimum ratio test. In view of Remark 10.5, we
have an unbounded LP problem. As an exercise for the reader, use the graphical method to
reach the same conclusion. ◾

10.5.2.4 Breaking Ties
The following remark tells us how to break ties for entering or leaving variables if any.

Remark 10.6 If there are ties for entering or leaving, we can break them arbitrarily.

Later in this section, we will delve into more determined strategies for resolving tie-
breakers when it comes to the selection of nonbasic variables. More specifically, we will
refer to other remarks (Remarks 10.10 and 10.11) that provide more guidance on breaking
ties, not only for the selection of nonbasic variables but also for deciding which variables
should enter or leave the set of basic variables. By exploring these tie-breaking strategies,
we aim to enhance more clarity and effectiveness of the decision-making process in LP
problem-solving.

Example 10.27 Use the simplex tableau method to solve the following maximization
problem.

max z = x1 + x2
s.t. x1 + x2 + x3≤ 1, (adding s1)

x1 + 2x3 ≤ 1, (adding s2)
x1, x2, x3 ≥ 0.

Solution
We have the following tableaux:

EROs z x1 x2 x3 s1 s2 rhs MR

R0 ∶ 1 −1 −1 0 0 0 0

R1 ∶ 0 1 1 1 1 0 1 1 (A candidate)

R2 ∶ 0 1 0 2 0 1 1 1 (Another candidate!)

R0 + R1 → R0 ∶ 1 0 0 1 1 0 1 Alternative

R1 → R1 ∶ 0 1 1 1 1 0 1 optimal

−R1 + R2 → R2 ∶ 0 0 −1 1 −1 1 0 solutions!

We have alternative optimal solutions. An optimal solution is given by (x1; x2; x3) =
(1; 0; 0). The optimal value is z = 1. ◾

10.5.2.5 Simplex Tableau for Minimization
Up to this point, our exploration has been centered on the simplex method as a means of
tackling linear maximization problems. However, it is important to note that this method is
versatile enough to be employed for solving linear minimization problems as well. When it
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comes to linear minimization LP problems, the guidelines pertaining to entering variables
and determining optimality are diametrically opposite to those governing maximization LP
problems. Further elaboration on these nuances is provided in the subsequent remarks.

Remark 10.7 (Criterion for choosing the entering variable in minimization)
The entering variable in a minimization LP problem is the nonbasic variable having the
most positive coefficient in the z-row.

Remark 10.8 (Criterion for optimality in minimization) In a minimization LP
problem, the optimum is reached at the iteration where all the z-row coefficient of the
non-basic variables are nonpositive.

In essence, the above remarks underscore the fundamental differences in approach
between solving maximization and minimization LP problems using the simplex method,
particularly when it comes to determining which variables to add to or remove from the
basis and when to declare a solution as optimal. We have the following examples.

Example 10.28 Use the simplex tableau method to solve the following minimization
problem.

min z = −x1 − x2
s.t. x1 − x2 ≤ 1, (adding s1)

x1 + x2 ≤ 2, (adding s2)
x1, x2 ≥ 0.

Solution
We have the following tableaux:

EROs z x1 x2 s1 s2 rhs MR

R0 ∶ 1 1 1 0 0 0

R1 ∶ 0 1 −1 1 0 1 1∕1 = 1

R2 ∶ 0 1 1 0 1 2 2∕1 = 2

R0 − R1 → R0 ∶ 1 0 2 −1 0 −1

R1 → R1 ∶ 0 1 −1 1 0 1

−R1 + R2 → R2 ∶ 0 0 2 −1 1 1 1∕2

R0 − (1∕2)R2 → R0 ∶ 1 0 0 0 −1 −2

R1 + (1∕2)R2 → R1 ∶ 0 1 0 1∕2 1∕2 3∕2 Optimal

(1∕2)R2 → R2 ∶ 0 0 1 −1∕2 1∕2 1∕2 tableau!

The reduced costs in the zeroth row of the tableau are all nonpositive, so the current
basic feasible solution is optimal. In terms of the original variables x1 and x2, this solution
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is x = (3∕2; 1∕2). The optimal value is z = −2. In addition, since the coefficient of the non-
basic variable s1 in the zeroth row of the last tableau is zero, we have alternative optimal
solutions. ◾

Example 10.29 Use the simplex tableau method to solve the following minimization
problem.

min z = −x1 − x2
s.t. 2x1 + x2 ≤ 4, (adding s1)

3x1 + 5x2 ≤ 15, (adding s2)
x1, x2 ≥ 0.

Solution
We have the following tableaux:

EROs z x1 x2 s1 s2 rhs MR

R0 ∶ 1 1 1 0 0 0

R1 ∶ 0 2 1 1 0 4 4∕2 = 2

R2 ∶ 0 3 5 0 1 15 15∕3 = 5

R0 −
1
2

R1 → R0 ∶ 1 0 1∕2 −1∕2 0 −2
1
2

R1 → R1 ∶ 0 1 1∕2 1∕2 0 2 2∕0.5 = 4

− 3
2

R1 + R2 → R2 ∶ 0 0 7/2 −3∕2 1 9 9∕3.5 ≈ 2.57

R0 −
1
7

R2 → R0 ∶ 1 0 0 −2∕7 −1∕7 −23∕7

R1 −
1
7

R2 → R1 ∶ 0 1 0 5∕7 −1∕7 5∕7 Optimal
2
7

R2 → R2 ∶ 0 0 1 −3∕7 2∕7 18∕7 tableau!

The optimal solution is x = (5∕7; 18∕7). The optimal value is z = −23∕7. ◾

10.5.2.6 Problems with Nonpositive Variables and/or Free Variables
Up to this point, we have explored the simplex method as a means to address linear opti-
mization problems featuring variables constrained to be nonnegative. Handling scenarios
where variables are required to be nonpositive is relatively straightforward. The approach
involves introducing a new nonnegative variable that represents the negation of the orig-
inal variable. In essence, if we encounter a variable, let us call it xj, such that xj ≤ 0, we
substitute it with −x′j while including the constraint x′j ≥ 0.

Similarly, when dealing with problems that include unrestricted-in-sign variables (often
referred to as free variables), the solution approach remains uncomplicated. Here, the strat-
egy is to introduce two fresh nonnegative variables, x′j and x′′j , with the constraint that their
difference equals the original variable xj. Consequently, if we encounter an unrestricted-
in-sign variable, denoted as xj, we replace it with x′j − x′′j and supplement the model with
the constraints x′j , x′′j ≥ 0. Notably, only one of x′j or x′′j can be part of the basis in a given
tableau, but not both. To further elucidate this, an illustrative example follows.
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Example 10.30 Use the simplex tableau method to solve the maximization LP:

max z = 2x1 + x2
s.t. 3x1 + x2 ≤ 6,

x1 + x2 ≤ 4,
x1 ≥ 0.

Solution
Note that the variable x2 is unrestricted-in-sign. An equivalent problem is

max z = 2x1 + x′2 − x′′2
s.t. 3x1 + x′2 − x′′2 ≤ 6, (adding s1)

x1 + x′2 − x′′2 ≤ 4, (adding s2)
x1, x′2, x′′2 ≥ 0.

We then have the following tableaux:

EROs z x1 x′2 x′′2 s1 s2 rhs MR

R0 ∶ 1 −2 −1 1 0 0 0

R1 ∶ 0 3 1 −1 1 0 6 6∕3 = 2

R2 ∶ 0 1 1 −1 0 1 4 4∕1 = 4

R0 +
3
2

R1 → R0 ∶ 1 0 −1∕3 1∕3 2∕3 0 4
1
3

R1 → R1 ∶ 0 1 1∕3 −1∕3 1∕3 0 2 2∕(1∕3) = 6

− 1
3

R1 + R2 → R2 ∶ 0 0 2/3 −2∕3 −1∕3 1 2 2∕(2∕3) = 3

R0 +
1
2

R2 → R0 ∶ 1 0 0 0 1∕2 1∕2 5

R1 −
1
2

R2 → R1 ∶ 0 1 0 0 1∕2 −1∕2 1 Optimal
3
2

R2 → R2 ∶ 0 0 1 −1 −1∕2 3∕2 3 tableau!

An optimal solution is given by x1 = 1 and x2 = x′2 − x′′2 = 3 − 0 = 3. The optimal value is
z = 5. We point out that the columns corresponding to x′2 and x′′2 are always identical but
with opposite signs. ◾

10.5.3 The Big-M Method

Until this point, our exploration of the simplex method has centered on resolving linear
optimization problems with inequality constraints of the form “≤.” An intriguing question
that arises is how to adapt this method to address maximization and minimization problems
featuring inequality constraints of “≥” or “=” nature. To tackle such problem types, a widely
employed technique is known as the big-M method. Essentially, the big-M method extends
the applicability of the simplex algorithm to encompass problems encompassing “greater-
than” and/or “equal” constraints.
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10.5.3.1 Problems with “Greater-than” and/or “Equal” Constraints
In cases where we solely encounter “≤” constraints, it is relatively straightforward to iden-
tify an initial basic feasible solution, typically involving the slack variables. However, a
critical question emerges: How can we establish an initial basic feasible solution when
confronted with “≥” and/or “=” constraints? The big-M method offers a solution to this
conundrum by introducing artificial variables for each “≥” and “=” constraints, following
the steps in Workflow 10.6.

Workflow 10.6 (The big-M method) We solve LP problems with “greater-than”
and/or “equal” constraints by following six steps:

(i) Modify constraints as needed so that all the right-hand side values are nonnegative.
(ii) Add an artificial variable, say ai, for constraint i if it is a “≥” or “=” constraint. Then

add the nonnegativity constraint ai ≥ 0.
(iii) Add ±Mai to the objective function, where M is a big positive number, as follows:

● For a maximization LP problem, add −Mai.
● For a minimization LP problem, add +Mai.

(iv) Convert the resulting LP into the standard form by adding slack/excess variables.
(v) Convert the LP into the canonical form and make the coefficient of ai in the zeroth

row zero by using elementary row operations involving M.
(vi) Operate Steps (iii)–(𝑣i) in Workflow 10.5.

As a direct application of Workflow 10.6, we have the following example.

Example 10.31 Use the simplex tableau method to solve the following minimization
problem.

min z = 2x1 + 3x2
s.t. 2x1 + x2 ≥ 4,

x1 − x2 ≥ −1,
x1, x2 ≥ 0.

Solution
Our initial course of action entails the execution of the procedure outlined in Steps (i)
through (𝑣) as laid out in Workflow 10.6. In this sequence, our primary objective is to bring
about a modification to the constraints of the problem. Our aim is to ensure that all the right-
hand side values within these constraints are adjusted to be nonnegative. Consequently,
we get

min z = 2x1 + 3x2
s.t. 2x1 + x2 ≥ 4,

−x1 + x2 ≤ 1,
x1, x2 ≥ 0.

Then, we add an artificial variable ai for constraint i if it is a “≥” or “=” constraint. Then
add ai ≥ 0. We also add Mai to the objective function, where M is a big positive number.
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This yields

min z = 2x1 + 3x2 + Ma1
s.t. 2x1 + x2 + a1 ≥ 4,

−x1 + x2 ≤ 1,
x1, x2, a1 ≥ 0.

Next, we convert the resulting LP into the standard form to get

min z = 2x1 + 3x2 + Ma1
s.t. 2x1 + x2 + a1 − e1 = 4,

−x1 + x2 + s1 = 1,
x1, x2, s1, e1, a1 ≥ 0.

Now, our next step involves the conversion of the LP problem into its canonical form.
To achieve this, we employ elementary row operations to manipulate the coefficients of the
variable ai in the zeroth row, making sure that they become zero. Following this preliminary
step, we proceed to execute the subsequent steps, specifically Steps (iii) through (𝑣i), as
delineated in Workflow 10.5.

This can be seen in the subsequent tableaux.

EROs z x1 x2 e1 s1 a1 rhs

R0 ∶ 1 −2 −3 0 0 −M 0 Not in

R1 ∶ 0 2 1 −1 0 1 4 canonical

R2 ∶ 0 −1 1 0 1 0 1 form

R0 + MR1 → R0 ∶ 1 2M − 2 M − 3 −M 0 0 4M In

R1 → R1 ∶ 0 2 1 −1 0 1 4 canonical

R2 → R2 ∶ 0 −1 1 0 1 0 1 form

R0 + (1 − M)R1 → R0 ∶ 1 0 −2 −1 0 −M + 1 4
1
2

R1 → R1 ∶ 0 1 1∕2 −1∕2 0 1∕2 2 Optimal
1
2

R1 + R2 → R2 ∶ 0 0 3∕2 −1∕2 1 1∕2 3 tableau!

The optimal solution is given by (x1; x2) = (2; 0). The optimal value is given by z = 4. ◾

Example 10.32 Use the simplex tableau method to solve the following minimization
problem.

min z = 2x1 − 3x2
s.t. x1 + 3x2 ≤ 9,

2x1 + 5x2 ≥ −6,
x2 ≥ 1,
x2 ≥ 0.
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Solution
Note that the variable x1 does not have any sign restrictions, making it what is known as
unrestricted-in-sign. We have the following tableaux:

EROs z x′1 x′′1 x2 s1 s2 e1 a1 rhs

R0 ∶ 1 −2 2 3 0 0 0 −M 0

R1 ∶ 0 1 −1 3 1 0 0 0 9

R2 ∶ 0 −2 2 −5 0 1 0 0 6

R3 ∶ 0 0 0 1 0 0 −1 1 1

R0 + MR3 → R0 ∶ 1 −2 2 M + 3 0 0 −M 0 M

R1 → R1 ∶ 0 1 −1 3 1 0 0 0 9

R2 → R2 ∶ 0 −2 2 −5 0 1 0 0 6

R3 → R3 ∶ 0 0 0 1 0 0 −1 1 1

R0 − (M + 3)R3 → R0 ∶ 1 −2 2 0 0 0 3 −M − 3 −3

R1 − 3R3 → R1 ∶ 0 1 −1 0 1 0 3 −3 6

R2 + 5R3 → R2 ∶ 0 −2 2 0 0 1 −5 5 11

R3 → R3 ∶ 0 0 0 1 0 0 −1 1 1

R0 − R1 → R0 ∶ 1 −3 3 0 −1 0 0 −M −9
1
3

R1 → R1 ∶ 0 1∕3 −1∕3 0 1∕3 0 1 −1 2
5
3

R1 + R2 → R2 ∶ 0 −1∕3 1/3 0 5∕3 1 0 0 21
1
3

R1 + R3 → R3 ∶ 0 1∕3 −1∕3 1 1∕3 0 0 0 3

R0 − 9R2 → R0 ∶ 1 0 0 0 −16 −9 0 −M −198 O

R1 + R2 → R1 ∶ 0 0 0 0 2 3 1 −1 23 P

3R2 → R2 ∶ 0 −1 1 0 5 3 0 0 63 T

R2 + R3 → R3 ∶ 0 0 0 1 2 1 0 0 24 M

We contemplated an equivalent problem to establish a version of the problem with equal-
ity constraints while ensuring that all variables involved are nonnegative. Our focus has
shifted to the following form:

min z = 2(x′1 − x′′1 ) − 3x2 + Ma1
s.t. (x′1 − x′′1 ) + 3x2 + s1 = 9,

−2(x′1 − x′′1 ) − 5x2 + s2 = 6,
x2 − e1 + a1 = 1,
x′1, x′′1 , x2, s1, s2, e1, a1 ≥ 0.

So, the optimal solution is given by x1 = x′1 − x′′1 = 0 − 63 = −63, x2 = 24 and e1 = 23,
hence (x1; x2) = (−63; 24). The optimal value is z = −198. ◾
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10.5.3.2 Detecting Infeasibility
The big-M method can be used to detect the infeasibility. The following remark tells us
when we have an infeasible problem.

Remark 10.9 If any artificial variable is basic in the optimal tableau, that is, ai > 0 for
some i, then the LP problem is infeasible.

As a direct application, we have the following example.

Example 10.33 Use the simplex tableau method to solve the following minimization
problem.

min z = 3x1
s.t. 2x1 + x2 ≥ 6,

3x1 + 2x2 = 4,
x1, x2 ≥ 0.

Solution
Considering an equivalent problem with equality constraints and nonnegative variables
only, we are interested in a problem of the form

min z = 3x1 + Ma1 + Ma2
s.t. 2x1 + x2 + a1 − e1 = 6,

3x1 + 2x2 + a2 = 4,
x1, x2, a1, a2, e1 ≥ 0.

We then have the following tableaux:

EROs z x1 x2 e1 a1 a2 rhs
R0 ∶ 1 −3 0 0 −M −M 0
R1 ∶ 0 2 1 −1 1 0 6
R2 ∶ 0 3 2 0 0 1 4

R0 + MR1 + MR2 → R0 ∶ 1 5M − 3 3M −M 0 0 10M
R1 → R1 ∶ 0 2 1 −1 1 0 6
R2 → R2 ∶ 0 3 2 0 0 1 4

R0 + (1 − 5
3

M)R2 → R0 ∶ 1 0 −M∕3 + 2 −M 0 −5M∕3 + 1 10M∕3 + 4 O
R1 −

2
3

R2 → R1 ∶ 0 0 −1∕3 −1 1 −2∕3 10∕3 P
1
3

R2 → R2 ∶ 0 1 2∕3 0 0 1∕3 4∕3 T

The last tableau is optimal. Since a1 = 10∕3 > 0, the problem is infeasible. As an exercise
for the reader, use the graphical method to reach the same conclusion. ◾
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10.5.3.3 Summary of the Simplex Method Steps
Considering all scenarios, we now summarize the above description of the simplex method.

Workflow 10.7 (Overview of the simplex method) We solve a linear optimization
problem by operating the following steps:

(i) Modify constraints as needed so that all the right-hand side values are nonnegative.
(ii) Add an artificial variable, say ai, for constraint i if it is a “≥” or “=” constraint. Then

add the nonnegativity constraint ai ≥ 0.
(iii) Add ±Mai to the objective function, where M is a big positive number.
(iv) Convert the resulting LP into the standard form by adding slack/excess variables.
(v) Convert the LP into the canonical form and make the coefficient of ai in the zeroth

row zero by using elementary row operations involving M.
(vi) Find a basic feasible solution for the canonical form.

(vii) If the current basic feasible solution is optimal, stop. If not, move to an adjacent basic
feasible solution with a higher value for the objective function by applying elementary
row operations and noting that:
● If the coefficient of a nonbasic variable in the zeroth row of the tableau is zero, then

the LP has alternative optimal solutions.
● If there is no candidate for the minimum ratio test, then the LP is unbounded.
● If any artificial variable is basic in the optimal tableau, that is, ai > 0 for some i,

then the LP is infeasible.
(viii) Go to Step (𝑣ii).

10.5.4 Anticycling

The simplex method may encounter a phenomenon known as cycling, where it struggles
to make progress. To address this issue and ensure that the simplex method always termi-
nates, two anticycling rules have been developed. These rules are the lexicographic rule
and Bland’s rule, named after Robert Bland, who discovered it in 1976. In this part, we will
focus our discussion on Bland’s rule. Part of Exercise 10.21 targets the lexicographic rule.
However, there are a number of good references to learn this and other anticycling rules,
see for example (Bertsimas and Tsitsiklis, 1997, Section 3.4).

Below we outline the pivoting rule for choosing the entering and leaving variables.

Remark 10.10 (Pivoting rule) In the ordinary pivoting rule, we choose the entering
variable with the most negative cj and choose the leaving variable according to the mini-
mum ratio test. If there are ties, break them by picking the variable with the smallest index.

Considering the above rule, we may get back to the starting tableau after some iterations
in some LP problems, as in the following example attributed to Bertsimas and Tsitsiklis
(1997).

Example 10.34 Consider the following LP problem.
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max z = 3
4

x1 − 20x2 +
1
2

x3 − 6x4

s.t. 1
4

x1 − 8x2 − x3 + 9x4 ≤ 0, (adding x5)
1
2

x1 − 12x2 −
1
2

x3 + 3x4 ≤ 0, (adding x6)

x3 + 6x4 ≤ 1, (adding x7)

x1, x2, x3, x4 ≥ 0.

(10.13)

If we use the simplex method to solve Problem 10.13 with the ordinary pivoting rule, we
obtain the simplex tableau in Table 10.3.

Note that the ending tableau is identical to the starting tableau. This means that the sim-
plex method is cycling here! ◾

Example 10.34 will be revisited in order to avoid cycling after discussing Bland’s rule.

10.5.4.1 Bland’s Rule
Bland’s rule (or the minimum index rule) is one of the algorithmic refinements of the sim-
plex method to avoid cycling.

Remark 10.11 (Bland’s rule) Bland’s rule under which the simplex method for linear
optimization terminates is as follows:

● Choose the entering variable xj such that j is the smallest index with cj < 0.
● Choose the leaving variable according to the minimum ratio test, and in the case of ties,

choose the one with the smallest index.

An illustrative example follows to elucidate Bland’s rule.

Example 10.35 (Example 10.34 revisited)
If we use the simplex method to solve Problem 10.13 with Bland’s rule, we obtain the

simplex tableau in Table 10.4.
Since we have applied Bland’s rule, the simplex method has terminated. The last tableau

is optimal, the optimal solution is x = (1; 0; 1; 0), and the optimal value is z = 5∕4. ◾

The question that remains now in this context is: How to prevent cycling when we solve
linear maximization problems? One answer stems from the following remark.

Remark 10.12 If you start with a minimization problem, say min f (x) subject to x ∈ S,
where f ∶ ℝn → ℝ is a function and S is a set, then an equivalent maximization prob-
lem is max −f (x) subject to x ∈ S. Similarly, if you start with a maximization problem, say
max f (x) subject to x ∈ S, then an equivalent minimization problem is min −f (x) subject
to x ∈ S.
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Table 10.3 The simplex tableau of Example 10.34

EROs z x1 x2 x3 x4 x5 x6 x7 rhs

R0 ∶ 1 −3/4 20 −1/2 6 0 0 0 0
R1 ∶ 0 1/4 −8 −1 9 1 0 0 0
R2 ∶ 0 1/2 −12 −1/2 3 0 1 0 0
R3 ∶ 0 0 0 1 6 0 0 1 1

R0 + 3R1 → R0 ∶ 1 0 −4 −7/2 33 3 0 0 0
4R1 → R1 ∶ 0 1 −32 −4 36 4 0 0 0

−2R1 + R2 → R2 ∶ 0 0 4 3/2 −15 −2 1 0 0
R3 → R3 ∶ 0 0 0 1 0 0 0 1 1

R0 + R2 → R0 ∶ 1 0 0 −2 18 1 1 0 0
R1 + 8R2 → R1 ∶ 0 1 0 8 −84 −12 8 0 0

1
4

R2 → R2 ∶ 0 0 1 3/8 −15/4 −1/2 1/4 0 0
R3 → R3 ∶ 0 0 0 1 0 0 0 1 1

R0 +
1
4

R1 → R0 ∶ 1 1/4 0 0 −3 −2 3 0 0
1
8

R1 → R1 ∶ 0 1/8 0 1 −21/2 −3/2 1 0 0
− 3

64
R1 + R2 → R2 ∶ 0 −3/64 1 0 3/16 1/16 −1/8 0 0

− 1
8

R1 + R3 → R3 ∶ 0 −1/8 0 0 21/2 3/2 −1 1 1

R0 + 16R2 → R0 ∶ 1 −1/2 16 0 0 −1 1 0 0
R1 + 56R2 → R1 ∶ 0 −5/2 56 1 0 2 −6 0 0

16
3

R2 → R2 ∶ 0 −1/4 16/3 0 1 1/3 −2/3 0 0
−56R2 + R3 → R3 ∶ 0 5/2 −56 0 0 −2 6 1 1

R0 +
1
2

R1 → R0 ∶ 1 −7/4 44 1/2 0 0 −2 0 0
1
2

R1 → R1 ∶ 0 −5/4 28 1/2 0 1 −3 0 0
− 1

6
R1 + R2 → R2 ∶ 0 1/6 −4 −1/6 1 0 1/3 0 0
R1 + R3 → R3 ∶ 0 0 0 1 0 0 0 1 1

R0 + 6R2 → R0 ∶ 1 −3/4 20 −1/2 6 0 0 0 0
R1 + 9R2 → R1 ∶ 0 1/4 −8 −1 9 1 0 0 0

3R2 → R2 ∶ 0 1/2 −12 −1/2 3 0 1 0 0
R3 → R3 ∶ 0 0 0 1 6 0 0 1 1

In essence, the conversion between minimization and maximization problems provides
an essential equivalence within optimization. By simply negating the objective function
and retaining the integrity of the constraints, whether starting from a minimization or
maximization problem, an equivalent problem with the opposite optimization objective is
established.
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Table 10.4 The simplex tableau of Example 10.35

EROs z x1 x2 x3 x4 x5 x6 x7 rhs

R0 ∶ 1 −3/4 20 −1/2 6 0 0 0 0
R1 ∶ 0 1/4 −8 −1 9 1 0 0 0
R2 ∶ 0 1/2 −12 −1/2 3 0 1 0 0
R3 ∶ 0 0 0 1 6 0 0 1 1

R0 + 3R1 → R0 ∶ 1 0 −4 −7/2 33 3 0 0 0
4R1 → R1 ∶ 0 1 −32 −4 36 4 0 0 0

−2R1 + R2 → R2 ∶ 0 0 4 3/2 −15 −2 1 0 0
R3 → R3 ∶ 0 0 0 1 0 0 0 1 1

R0 + R2 → R0 ∶ 1 0 0 −2 18 1 1 0 0
R1 + 8R2 → R1 ∶ 0 1 0 8 −84 −12 8 0 0

1
4

R2 → R2 ∶ 0 0 1 3/8 −15/4 −1/2 1/4 0 0
R3 → R3 ∶ 0 0 0 1 0 0 0 1 1

R0 +
1
4

R1 → R0 ∶ 1 1/4 0 0 −3 −2 3 0 0
1
8

R1 → R1 ∶ 0 1/8 0 1 −21/2 −3/2 1 0 0
− 3

64
R1 + R2 → R2 ∶ 0 −3/64 1 0 3/16 1/16 −1/8 0 0

− 1
8

R1 + R3 → R3 ∶ 0 −1/8 0 0 21/2 3/2 −1 1 1

R0 + 16R2 → R0 ∶ 1 −1/2 16 0 0 −1 1 0 0
R1 + 56R2 → R1 ∶ 0 −5/2 56 1 0 2 −6 0 0

16
3

R2 → R2 ∶ 0 −1/4 16/3 0 1 1/3 −2/3 0 0
−56R2 + R3 → R3 ∶ 0 5/2 −56 0 0 −2 6 1 1

R0 +
1
5

R3 → R0 ∶ 1 0 24/5 0 0 −7/5 11/5 1/5 1/5
R1 + R3 → R1 ∶ 0 0 0 1 0 0 0 1 1

R2 +
1

10
R3 → R2 ∶ 0 0 −4/15 0 1 2/15 −11/15 1/10 1/10

2
5

R3 → R3 ∶ 0 1 −112/5 0 0 −4/5 12/5 2/5 2/5

R0 +
21
2

R2 → R0 ∶ 1 0 2 0 21/2 0 3/2 5/4 5/4
R1 → R1 ∶ 0 0 0 1 0 0 0 1 1

15
2

R2 → R2 ∶ 0 0 −2 0 15/2 1 −1/2 3/4 3/4
6R2 + R3 → R3 ∶ 0 1 −24 0 6 0 2 1 1

In consideration of Remark 10.12, to mitigate cycling in the context of maximizing cTx
while adhering to certain constraints, we employ the simplex method and implement
Bland’s rule to minimize −cTx under the same constraints. This approach yields an
identical optimal solution, albeit with the optimal value of the maximization problem
being equal to the result of the minimization problem, multiplied by −1.
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10.5.5 Complexity

Similar to any algorithmic method, the computational complexity of the simplex method is
determined by the following two factors: (a) The computational complexity of each itera-
tion. (b) The total number of iterations.

The following theorem is known to hold (we refer to Section 3.3 in Bertsimas and Tsitsik-
lis (1997)). It indicates that the amount of computation in each iteration of the full tableau
method is propositional to the size of the coefficient matrix.

Theorem 10.6 The number of arithmetic operations in each iteration of the simplex
tableau algorithm solving Problem (10.9) is O(mn).

Note that the estimate of the computational complexity in Theorem 10.6 refers to a single
iteration. This complexity estimate is for both the worst-case time and the best-case time.

In practice, the simplex method’s advantage lies in the observation that it typically con-
verges in just O(m) iterations to discover an optimal solution. However, from a theoretical
perspective, the method has its drawback, as this observation does not hold true for every
LP problem. In fact, there exists a class of problems for which an exponential number of
iterations is needed (Bertsimas and Tsitsiklis, 1997, Section 3.7). This phenomenon arises
because the count of extreme points within the feasible set can grow exponentially with an
increase in the number of variables and constraints.

10.6 Duality in Linear Programming

LP duality studies the relationships between pairs of linear programs and their solutions.
The LP problem in the primal standard form is defined as

min cTx
s.t. A x = b, (P|LP)

x ≥ 𝟎,

where A ∈ ℝm×n, b ∈ ℝm and c ∈ ℝn constitute given data, and x ∈ ℝn is called the primal
decision variable.

The LP problem in the dual standard form is the dual of (P|LP), which is defined as

max bTy
s.t. ATy ≤ c, (D|LP)

where y ∈ ℝm is called the dual decision variable.

10.6.1 Lagrangian Duality and LP Duality

Problem (D|LP) can be derived from (P|LP) through the usual Lagrangian approach. The
optimization problems are classified into two classes: Constrained optimization problems
and unconstrained optimization problems. This classification is based on whether or not
we have constraints on the variables. The Lagrangian approach is a technique by which
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Table 10.5 Correspondence rules
between primal and dual linear
programs

Primal Minimum Maximum Dual

C ≥ b ≥ 𝟎 V
N ≤ b ≤ 𝟎 A
S = b urs R

V ≥ 𝟎 ≤ c C
A ≤ 𝟎 ≥ c N
R urs = c S

a constrained optimization problem becomes an unconstrained optimization problem by
adding Lagrangian multipliers for the equality constraints. The Lagrangian function is a
function that combines the objective function being optimized with functions penalizing
constraint violations linearly.

The Lagrangian function for (P|LP) is defined as

(x, 𝜆, 𝜈) ≜ cTx − 𝜆T(A x − b) − 𝜈Tx.

The vectors 𝜆 and 𝜈 are called Lagrangian multipliers. The dual of (P|LP) has the objective
function

q(𝜆, 𝜈) ≜ inf
x
(x, 𝜆, 𝜈) = 𝜆Tb + inf

x
(c − AT𝜆 − 𝜈)Tx.

The dual problem is obtained by maximizing q(𝜆, 𝜈) subject to 𝝂 ≥ 0.
If c − AT𝜆 − 𝜈 ≠ 𝟎, the infimum is clearly −∞. So we can exclude 𝜆 for which c − AT𝜆 −

𝜈 ≠ 𝟎. When c − AT𝜆 − 𝜈 = 𝟎, the dual objective function is simply 𝜆Tb. Hence, we can write
the dual problem as follows:

max bT𝜆

s.t. AT𝜆 + 𝝂 = c,
𝝂 ≥ 𝟎.

(10.14)

Replacing 𝜆 and 𝜈 in (10.14) by x and z, respectively, we get (D|LP).
In the realm of linear optimization, it is essential to acknowledge that there exist

diverse formulations beyond the standard forms (P|LP) and (D|LP). Linear optimization
problems can take on various alternative forms to suit specific problem requirements and
constraints. When dealing with LPs that adopt different formulations, Table 10.5 offers
a valuable resource. This table provides a summary of the correspondence rules that
establish the relationships between the primal and dual LPs. In other words, it outlines
how the parameters and components of the primal and dual formulations are interrelated,
facilitating the translation and understanding of LP problems in their various forms.

In light of Table 10.5, we have the following remark.
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Remark 10.13 The following are three typical pairs of primal and dual LP problems:

min cTx max bTy
(P|LP) s.t. Ax = b, s.t. ATy ≤ c, (D|LP)

x ≥ 𝟎;
min cTx max bTy

(P|LP) s.t. Ax ≥ b; s.t. ATy = c, (D|LP)
y ≥ 𝟎,

min cTx max bTy
(P̂|LP) s.t. Ax ≥ b, s.t. ATy ≤ c, (D̂|LP)

x ≥ 𝟎; y ≥ 𝟎.

The dual of the dual is the primal (see Proposition 10.1), so it does not matter which
problem is called the primal.

Example 10.36 The following is a pair of primal–dual linear programs.

max 5x1 + 4x2 − 3x3 min 4y1 + 5y2
s.t. x1 − 5x3 ≥ 4, s.t. y1 + 3y2 ≥ 5,

3x1 + x2 + 2x3 ≤ 5, y2 = 4,
x1 ≥ 0, x2 urs, x3 ≥ 0; −5y1 + 2y2 ≥ −3,

y1 ≤ 0, y2 ≥ 0.

If we take the dual of the dual, we get

max 5z1 + 4z2 − 3z3
s.t. z1 − 5z3 ≥ 4,

3z1 + z2 + 2z3 ≤ 5,
z1 ≥ 0, z2 urs, z3 ≥ 0,

which is the primal problem. ◾

The proof of the following proposition is left as an exercise for the reader.

Proposition 10.1 The dual of the dual is the primal.

10.6.2 The Duality Theorem

The duality theorem is a very powerful theoretical tool that is very useful in applications
because it leads to an interesting class of optimization algorithms. In this part, we state and
prove the weak and strong duality theorems for the primal–dual pair (P|LP) and (D|LP).
All the results in this part are stated for the pair (P|LP) and (D|LP), but we indicate that all
these results are satisfied for any primal–dual pair, including the pair (P|LP) and (D|LP) as
well as the pair (P̂|LP) and (D̂|LP) outlined in Remark 10.13.

Recall that an optimization problem is called feasible if it has at least one feasible point,
and infeasible otherwise. Recall also that an optimization problem is called unbounded if it
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is feasible and has unbounded optimal value. More specifically, a minimization (maximiza-
tion) problem is called unbounded if it is feasible and has the optimal cost −∞ (optimal
cost +∞).

We state the weak duality property in Theorem 10.7.

Theorem 10.7 (Weak duality in LP) Consider the primal–dual pair (P|LP) and
(D|LP). Let (P|LP) and (D|LP) be both feasible. If x is a feasible solution to (P|LP) and y is
a feasible solution to (D|LP), then bTy ≤ cTx.

Proof: Note that, in (D|LP), the constraint ATy ≤ c can be written as ATy + s = c with s ≥

𝟎. It follows that cTx − bTy = (ATy + s)Tx − bTy = yTAx + sTx − yTb = yT(Ax − b) + sTx =
xTs ≥ 𝟎, where the last equality follows from the constraint Ax = b stated in (P|LP), and the
inequality follows because x ≥ 𝟎 and s ≥ 𝟎. The proof is complete. ◾

The following corollary is now easy to obtain.

Corollary 10.4 Consider the primal–dual pair (P|LP) and (D|LP).

(a) If (P|LP) is unbounded, then (D|LP) is infeasible.
(b) If (D|LP) is unbounded, then (P|LP) is infeasible.

Proof: If we prove item (a), item (b) immediately follows by a symmetrical argument.
Suppose, on the contrary, that Problem (P|LP) is feasible, with the optimal cost −∞,
and that Problem (D|LP) is also feasible. Let 𝑤 be the optimal cost in (D|LP). By weak
duality, we have 𝑤 ≤ −∞. That is, 𝑤 ≤ r for all r ∈ ℝ, which is impossible. This means
that (D|LP) cannot have a feasible solution. This proves item (a), and hence completes
the proof. ◾

In Figure 10.15, we show visually how the duality gap between the primal and dual LP
problems turns to zero. That is, the difference cTx − bTy becomes zero when x is an optimal
solution to (P|LP) and y is an optimal solution to (D|LP). This is the essence of the strong
duality property, which is stated below in Theorem 10.8.

Theorem 10.8 (Strong duality in LP) Consider the primal–dual pair (P|LP) and
(D|LP). Assume that (P|LP) and (D|LP) are both feasible. If one of (P|LP) or (D|LP) has a
finite optimal solution, so does the other, and their optimal values are equal.

Dual feasible Primal feasible

Objective value
+∞−∞

Dual opt

Primal gap

turns to zero

Primal opt

max bTy min cTx

(D|LP) (P|LP)

Figure 10.15 The duality gap between the primal and dual LP problems.
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Proof: Let x and y be feasible solutions to Problems (P|LP) and (D|LP), respectively. Starting
from the weak duality (as presented in Theorem 10.7), we have the inequality bTy ≤ cTx,
which signifies that both Problems (P|LP) and (D|LP) are bounded. Let z and 𝑤 represent
the optimal values of (P|LP) and (D|LP), respectively. Using the weak duality once more,
we have 𝑤 ≤ z. To establish that 𝑤 = z, we can consider a contradiction. Suppose, to the
contrary, that 𝑤 < z. In that case, there exists no y that satisfies the inequalities ATy ≤ c
and bTy ≥ z, or equivalently[

AT

−bT

]
y ≤

[
c
−z

]
. (10.15)

Letting

Â ≜
[
Â ⋮ −b

]
, and ĉ ≜

[
c
−z

]
,

we can rewrite (10.15) as ÂTy ≤ ĉ. Using Farkas’ lemma (Version II; see Theorem 3.16),
there exists a vector x̂ satisfying

Âx̂ = 𝟎, ĉTx̂ < 0, and x̂ ≥ 𝟎. (10.16)

Note that the vector x̂ can be written as x̂ ≜ (x; 𝛼) with 𝛼 ≠ 0. This rewrites (10.16) as

[
A ⋮ −b

] [x
𝛼

]
= 𝟎,

[
c
−z

]T [x
𝛼

]
< 0, and

[
x
𝛼

]
≥ 𝟎. (10.17)

To prove that 𝛼 ≠ 0, suppose the contrary, that is, 𝛼 = 0. Then, from (10.17), we have
Ax = 𝟎, cTx < 0, and x ≥ 𝟎. Applying Farkas’ Lemma (Version II) once again, we find that
there is no vector y satisfying ATy ≤ c. This implies that Problem (D|LP) is infeasible, which
is in contradiction with our initial assumption.

It is now evident that 𝛼 ≠ 0, and further analysis shows that 1
𝛼

x ≥ 𝟎. Additionally, Ax −
𝛼c = 𝟎, which can be written as A( 1

𝛼
x) = c. This implies that the vector 1

𝛼
x is feasible for

(P|LP). However, from (10.17), we have cTx − 𝛼z < 0, so cT( 1
𝛼

x) < z. This contradicts the
fact that z is the optimal value of (D|LP). Hence, it is confirmed that 𝑤 = z. The proof is
complete. ◾

The following example, which is due to Nemhauser and Wolsey (1988), is a direct appli-
cation of Theorem 10.8.

Example 10.37 Consider the following primal–dual pair of problems.

min 7x1 + 2x2 max 4y1 + 20y2 − 7y3
s.t. −x1 + 2x2 ≤ 4, s.t. −y1 + 5y2 − 2y3 ≥ 7,

5x1 + x2 ≤ 20, 2y1 + y2 − 2y3 ≥ 2,
−2x1 − 2x2 ≤ −7, y1, y2, y3 ≤ 0.

x1, x2 ≤ 0;

Let x★ ≜ ( 36
11
; 40

11
) and y★ ≜ ( 3

11
; 16

11
; 0). One can easily see that x★ and y★ are feasible in

the primal and dual problems, respectively. One can also easily see that bTy★ = 30 2
11

and
cTx★ = 30 2

11
. Based on the strong duality property (Theorem 10.8), since bTy★ = cTx★, we
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conclude that x★ and y★ are optimal in the primal and dual problems, respectively, and
their optimal value is 30 2

11
. ◾

It is a natural question to ask: Can Problems (P|LP) and (D|LP) be both infeasible? The
following example answers this question positively.

Example 10.38 The following primal–dual pair of problems are both infeasible.

min x1 + 2x2 max 2y1 + 4y2
s.t. x1 + x2 = 2, s.t. y1 + 3y2 = 1,

3x1 + 3x2 = 4; y1 + 3y2 = 2. ◾

It is not hard now to establish the following corollary.

Corollary 10.5 Consider the primal–dual pair (P|LP) and (D|LP).

(a) If (P|LP) is infeasible, then (D|LP) is either infeasible or unbounded.
(b) If (D|LP) is infeasible, then (P|LP) is either infeasible or unbounded.

Proof: Note that the possibility that Problems (P|LP) and (D|LP) could be both infeasible
has been grounded in Example 10.38. To establish item (a), it remains to demonstrate that
if (P|LP) is infeasible and (D|LP) is feasible, then (D|LP) must be unbounded. Assume that
(P|LP) is infeasible, and let y be a feasible solution for (D|LP). Since (P|LP) is infeasible, there
exists no x satisfying Ax = b and x ≥ 𝟎. Applying Farkas’ Lemma (Version I, as presented
in Theorem 3.15), we can conclude that there exists a vector ŷ that satisfies ATŷ ≥ 𝟎 and
bTŷ < 0. Now, due to the feasibility of y in (D|LP), we know that ATy ≤ c. Let us define
y𝛼 ≜ y − 𝛼ŷ for 𝛼 ≥ 0. We can then observe that

ATy𝛼 = AT(y − 𝛼ŷ) = ATy − 𝛼ATŷ ≤ c − 𝛼ATŷ ≤ c.

This demonstrates that y𝛼 is feasible in (D|LP). Furthermore, because bTŷ < 0, it is clear
that bTy𝛼 tends toward infinity as 𝛼 approaches infinity:

bTy𝛼 = bT(y − 𝛼ŷ) = bTy − 𝛼bTŷ −−−−→ bTy +∞ = ∞.

This implies that Problem (D|LP) is unbounded, successfully proving item (a). To prove
item (b), we can apply a symmetrical argument similar to that of item (a) and utilize Farkas’
lemma (Version II). We leave the proof of this part as an exercise for the reader (see Exercise
10.11). With this, we conclude the proof. ◾

Corollary 10.6 is now obvious. See also Table 10.6.

Corollary 10.6 There are only four possibilities for the primal–dual pair (P|LP) and
(D|LP). Namely:

(a) Both (P|LP) and (D|LP) are feasible and their optimal values are finite and equal.
(b) (P|LP) is infeasible and (D|LP) is unbounded.
(c) (P|LP) is unbounded and (D|LP) is infeasible.
(d) Both (P|LP) and (D|LP) are infeasible.
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Table 10.6 Possibilities for the primal and the dual linear programs

(P|LP) (P|LP) (P|LP)

Finite optimum Unbounded Infeasible

(D|LP) Finite optimum ✓ × ×
(D|LP) Unbounded × × ✓
(D|LP) Infeasible × ✓ ✓

10.6.3 Complementary Slackness

Complementary slackness refers to the idea that for an optimal solution, the product of the
decision variable in the primal problem and the corresponding slack variable in the dual
problem is equal to zero. We have the following definition.

Definition 10.10 A slack variable is a variable that is added to an inequality constraint
to transform it into an equality. Likewise, an excess (also called surplus or negative slack)
variable is a variable that is subtracted to an inequality constraint to transform it into an
equality.

Consider the pair (P̂|LP) and (D̂|LP) outlined in Remark 10.13.

min cTx max bTy
(P̂|LP) s.t. Ax ≥ b, s.t. ATy ≤ c, (D̂|LP)

x ≥ 𝟎; y ≥ 𝟎.

Let s ≜ c − ATy ≥ 𝟎 be the vector of slack variables of (P̂|LP), and e ≜ Ax − b ≥ 𝟎 be the
vector of excess variables of (D̂|LP). Then (P̂|LP) and (D̂|LP) are written as

min cTx max bTy
s.t. Ax − e = b, s.t. ATy + s = c,

x, e ≥ 𝟎; y, s ≥ 𝟎.

The complementary slackness conditions for LP are provided in the following theorem.

Theorem 10.9 (Complementary slackness) Consider the primal–dual pair (P̂|LP)
and (D̂|LP). If x★ is an optimal solution to (P̂|LP) and y★ is an optimal solution to (D̂|LP),
then x★i s★i = 0 for all i, and y★j e★j = 0 for all j, where e★ ≜ Ax★ − b and s★ ≜ c − ATy★.

Proof: Note that

cTx★ = (ATy★ + s★)Tx★

= y★TAx★ + s★Tx★

= y★T(b + e★) + s★Tx★ = bTy★ + y★Te★ + s★Tx★.

Note also that the strong duality property (Theorem 10.8) implies that cTx★ = bTy★. It
follows that y★Te★ + s★Tx★ = 0. Because x★, e★, y★ and s★ are all nonnegative vectors,
we have x★i s★i = 0 for all i, and y★j e★j = 0 for all j. The proof is complete. ◾



COPYRIG
HTED M

ATERIA
L

�

� �

�

346 10 Linear Programming

Example 10.39 (Example 10.37 revisited)
To see how the complementary slackness conditions hold for the primal–dual pair in
Example 10.37, note that the slack and excess variables are s★ ≜ (0; 0; 6 9

11
) and e★ ≜ (0; 0),

respectively. In this case, x★i e★i = 0 for i = 1, 2, and y★j s★j = 0 for j = 1, 2, 3. ◾

Complementary slackness conditions are not only used to verify optimality but also serve
as a foundation for duality theory, which is a powerful tool for solving and interpreting LP
problems in various real-world applications.

10.6.4 The Dual Optimal Solution via the Primal Simplex Tableau

Recall that, from Theorem 10.8, if the primal and dual problems are both feasible and one
of them has a finite optimal solution, so does the other, and their optimal values are equal.
The question that emerges at this point is: How can one determine the optimal solution of
a dual problem using the simplex tableau of the primal problem? We address this inquiry
by presenting the following remark.

Remark 10.14 If we are given the simplex tableau of a primal maximization problem,
then

Optimal yi =
⎧⎪⎨⎪⎩

Coefficient of si in R0, if the ith constraint is “ ≤ ”;
−(Coefficient of ei in R0), if the ith constraint is “ ≥ ”;
(Coefficient of ai in R0) − M, if the ith constraint is “ = .”2

If we are given the simplex tableau of a primal minimization problem, then

Optimal yi =
⎧⎪⎨⎪⎩

Coefficient of si in R0, if the ith constraint is “ ≤ ”;
−(Coefficient of ei in R0), if the ith constraint is “ ≥ ”;
(Coefficient of ai in R0) + M, if the ith constraint is “ = .”

In the following example from Winston (1996), Remark 10.14 is applied.

Example 10.40 The dual problem of the maximization LP problem

max z = 30x1 + 100x2
s.t. x1 + x2 ≤ 7,

4x1 + 10x2 ≤ 40,
10x1 ≥ 30,
x1 ≥ 0, x2 ≥ 0,

(10.18)

is the minimization LP problem

min 𝑤 = 7y1 + 40y2 + 30y3
s.t. y1 + 4y2 + 10y3 ≥ 30,

y1 + 10y2 ≥ 100,
y1 ≥ 0, y2 ≥ 0, y3 ≤ 0.

(10.19)

2 This also holds when the ith constraint is “≥.”
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Solving Problem (10.18) by the simplex tableau method, we obtain

EROs z x1 x2 s1 s2 e3 a3 rhs
R0 ∶ 1 −30 −100 0 0 0 M 0
R1 ∶ 0 1 1 1 0 0 0 7
R2 ∶ 0 4 10 0 1 0 0 40
R3 ∶ 0 10 0 0 0 −1 1 30

R0 − MR3 → R0 ∶ 1 −30 − 10M −100 0 0 M 0 −30M
R1 → R1 ∶ 0 1 1 1 0 0 0 7
R2 → R2 ∶ 0 4 10 0 1 0 0 40
R3 → R3 ∶ 0 10 0 0 0 −1 1 30

R0 + (3 + M)R3 → R0 ∶ 1 0 −100 0 0 −3 M + 3 90
R1 −

1
10

R3 → R1 ∶ 0 0 1 1 0 1∕10 −1∕10 4
R2 −

2
5

R3 → R2 ∶ 0 0 10 0 1 3∕5 −3∕5 28
1

10
R3 → R3 ∶ 0 1 0 0 0 −1∕10 1∕10 3

R0 + 10R1 → R0 ∶ 1 0 0 0 10 1 M − 1 370
R1 → R1 ∶ 0 0 0 1 −1∕10 3∕50 −3∕50 1.2
R2 → R2 ∶ 0 0 1 0 −1∕10 1∕25 −1∕25 2.8
R3 → R3 ∶ 0 1 0 0 0 −1∕10 1∕10 3

The last tableau is optimal. The optimal value is z = 370, the primal optimal solution is
(x1; x2) = (3; 2.8). According to Remark 10.14, the dual optimal solution is:

y1 = Coefficient of s1 in R0 = 0;
y2 = Coefficient of s2 in R0 = 10;
y3 = −(Coefficient of e3 in R0) = −1,

or y3 = (Coefficient of a3 in R0) − M = (M − 1) − M = −1.
To check this, note that the dual optimal value is:

𝑤 = 7y1 + 40y2 + 30y3 = 370,

which is exactly the primal optimal value. ◾

10.7 A Homogeneous Interior-Point Method

Interior-point methods (Nesterov and Nemirovskii, 1994) represent a class of highly
efficient techniques designed to solve both linear and nonlinear programming problems.
In stark contrast to the simplex method, interior-point methods excel by moving through
the interior of the feasible region to reach an optimal solution. Multiple interior-point
algorithms have been devised for LP problems, offering versatile tools for optimization
(Bertsimas and Tsitsiklis, 1997, Chapter 9).

Among the interior-point methods, homogeneous self-dual algorithms stand out as a
valuable method for solving both linear and nonlinear programming. This section intro-
duces a homogeneous interior-point algorithm tailored for solving (P|LP) and (D|LP) prob-
lems outlined in Section 10.6. The content presented here draws from previous work found
in Tucker (1957) and Ye et al. (1994).
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We define the following feasibility sets for the primal–dual pair (P|LP) and (D|LP).

P|LP ≜ {x ∈ ℝn ∶ Ax = b, x ≥ 𝟎} ,
D|LP ≜

{
(y, s) ∈ ℝm ×ℝn ∶ ATy + s = c, s ≥ 𝟎

}
,

∘
P|LP ≜ {x ∈ ℝn ∶ Ax = b, x > 𝟎} ,

∘
D|LP ≜

{
(y, s) ∈ ℝm ×ℝn ∶ ATy + s = c, s > 𝟎

}
,

∘
LP ≜ ∘

P|LP × ∘
D|LP.

We also make the following assumptions about the primal–dual pair (P|LP) and (D|LP).

Assumption 10.1 The m rows of the matrix A are linearly independent.

Assumption 10.2 The set ∘
LP is nonempty.

Assumption 10.1 is introduced for the sake of convenience. On the other hand, Assumption
10.2 imposes the requirement that both Problem (P|LP) and its dual counterpart (D|LP)
must possess strictly feasible solutions. This condition serves as a guarantee, ensuring the
existence of strong duality within the context of the LP problem.

The following primal–dual LP model provides sufficient conditions (but not always nec-
essary) for an optimal solution of (P|LP) and (D|LP).

Ax = b,
ATy + s = c,

xTs = 0,
x, s ≥ 𝟎.

(10.20)

The homogeneous LP model for the pair (P|LP) and (D|LP) is as follows:

Ax −b𝜏 = 𝟎,
−ATy −s +c𝜏 = 𝟎,

−cTx +bTy −𝜅 = 0,
x ≥ 𝟎,

s ≥ 𝟎,
𝜏 ≥ 0,

𝜅 ≥ 0.

(10.21)

The first two equations in (10.21), with 𝜏 = 1, represent primal and dual feasibility (with
x, s ≥ 𝟎) and reversed weak duality. So they, together with the third equation after forcing
𝜅 = 0, define primal and dual optimal solutions. Note that homogenizing 𝜏 (i.e., making it
a variable) adds the required variable dual to the third equation, introducing the artificial
variable 𝜅 achieves feasibility, and adding the third equation in (10.21) achieves self-duality.

One can show that xTs + 𝜏𝜅 = 0 (see Exercise 10.22). The next theorem relates (10.20) to
(10.21), and it is easily proved. Here, as defined previously, ℝn

+ = {x ∈ ℝn ∶ x ≥ 𝟎} is the
nonnegative orthant cone.

Theorem 10.10 The primal–dual LP model (10.20) has a solution if and only if the homo-
geneous LP model (10.21) has a solution(

x★, y★, s★, 𝜏★, 𝜅★) ∈ ℝn
+ ×ℝm ×ℝn

+ ×ℝ+ ×ℝ+

such that 𝜏★ > 0 and 𝜅★ = 0.
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The main step at each iteration of the homogeneous interior-point algorithm for solving
(P|LP) and (D|LP) is the computation of the search direction (Δx,Δy,Δs) from the Newton
equations defined by the following system.

A Δx −b Δ𝜏 = 𝜂rp,

− AT Δy − Δs +c Δ𝜏 = 𝜂rd,

−cT Δx + bT Δy − Δ𝜅 = 𝜂rg,

𝜅 Δ𝜏 + 𝜏 Δ𝜅 = 𝛾𝜇 − 𝜏𝜅,

SΔx +XΔs = 𝛾𝜇𝟏 − Xs,

(10.22)

where 𝟏 is a vector of ones with an appropriate dimension, 𝜂 and 𝛾 are two parameters,
X ≜ Diag(x) ∈ ℝn×n is the diagonal matrix with the vector x ∈ ℝn on its diagonal, same for
S ≜ Diag(s) ∈ ℝn×n, and

rp ≜ b𝜏 − Ax, rd ≜ ATy + s − 𝜏c,
rg ≜ cTx − bTy + 𝜅, 𝜇 ≜ 1

n+1
(xTs + 𝜏𝜅).

We state the homogeneous algorithm for (P|LP) and (D|LP) in Algorithm 10.1.

Algorithm 10.1: Generic homogeneous self-dual algorithm for LP
Input: Data in Problems (P|LP) and (D|LP), (𝑥, 𝑦, 𝑠, 𝜏, 𝜅) ≜ (𝟏, 𝟎, 𝟏, 1, 1)
Output: An approximate optimal solution to Problem (P|LP)
while a stopping criterion is not satisfied do1:

choose 𝜂, 𝛾2:

compute the solution (Δ𝑥,Δ𝑦,Δ𝑠,Δ𝜏,Δ𝜅) of the linear system (10.22)3:

compute a step length 𝜃 so that4:

𝑥 + 𝜃Δ𝑥 > 𝟎
𝑠 + 𝜃Δ𝑠 > 𝟎
𝜏 + 𝜃Δ𝜏 > 0
𝜅 + 𝜃Δ𝜅 > 0
set the new iterate according to5:

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) ≜ (𝑥, 𝑦, 𝑠, 𝜏, 𝜅) + 𝜃(Δ𝑥,Δ𝑦,Δ𝑠,Δ𝜏,Δ𝜅)
end6:

The following theorem is known to hold (see Ye et al. (1994)). It gives the computational
complexity (worst behavior) of Algorithm 10.1 in terms of the dimension of the decision
variable (n).

Theorem 10.11 Let 𝜖0 > 0 be the residual error at a starting point, and 𝜖 > 0 be a given
tolerance. Under Assumptions 10.2 and 10.1, if the pair (P|LP) and (D|LP) has a solution
(x★, y★, s★), then Algorithm 10.1 finds an 𝜖-approximate solution (i.e., a solution with
residual error less than or equal to 𝜖) in at most

O
(√

n ln
(
𝟏T (x★ + s★

) (𝜖0

𝜖

)))
iterations.
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Theoretically, the advantage of this interior-point method is maintaining the iteration
complexity of O(

√
n ln(L)), where L is the data length of the underlying LP problem. Practi-

cally, the disadvantage of this method is the doubled dimension of the system of equations,
which must be solved at each iteration.

Exercises

10.1 Choose the correct answer for each of the following multiple-choice question-
s/items.
(a) All LP problems may be solved using the graphical method.

(i) True. (ii) False.
(b) Al-Akhawayn Inc. manufactures two varieties of paper towels, known as

“regular” and “super-soaker.” The marketing department has established a
requirement that the total monthly production of regular paper towels should
not exceed twice the monthly production of super-soaker paper towels. In
this context, let us denote by x1 the quantity of regular paper towels produced
per month and by x2 the quantity of super-soaker paper towels produced per
month. The relevant constraint(s) can be expressed as:
(i) 2x1 ≤ x2.

(ii) x1 ≤ 2x2.
(iii) x1 ≤ 0.5x2.
(iv) x1 − x2 ≤ 0.

(v) x1 − 0.5x2 ≥ 0.

(c) Problem A is a given formulation of an LP problem with an optimal solution.
Problem B is a formulation obtained by multiplying the objective function of
Problem A by a positive constant and leaving all other things unchanged. Prob-
lems A and B will have

(i) the same optimal solution and same objective function value.
(ii) the same optimal solution but different objective function values.

(iii) different optimal solutions but same objective function value.
(iv) different optimal solutions and different objective function values.

(d) Consider the following LP problem:

max 12x + 10y
s.t. 4x + 3y ≤ 480,

2x + 3y ≤ 360,
x, y ≥ 0.

Which of the following points (x, y) could be a feasible corner point?
(i) (40, 48).

(ii) (120, 0).
(iii) (180, 120).
(iv) (30, 36).

(v) None of the above.

(e) Al-Akhawayn Inc. manufactures two categories of printers, which are labeled
as “regular” and “high-speed.” The regular printers utilize 2 units of recycled
plastic per unit produced, while the high-speed printers consume 1 unit of recy-
cled plastic per unit of production. The company has a monthly supply of 5000
units of recycled plastic. To produce these printers, a critical machine is essen-
tial, with each unit of regular printers requiring 5 units of machine time and
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each unit of high-speed printers necessitating 3 units of machine time. The
total available machine time per month amounts to 10,000 units. In this con-
text, let us denote the number of units of regular printers produced per month
as x1 and the number of units of high-speed printers produced per month as x2.
The relevant constraint(s) can be expressed as:

(i) 2x1 + x2 = 5000.
(ii) 2x1 + x2 ≤ 5000.

(iii) 5x1 + 3x2 ≤ 10, 000.
(iv) (i) and (iii).

(v) (ii) and (iii).

(f) Problem A is a given formulation of an LP with an optimal solution and its
constraint 1 is ≤ type. Problem B is a formulation obtained from Problem A by
replacing the≤ constraint by an equality constraint and leaving all other things
unchanged. Problems A and B will have
(i) the same optimal solution and same objective function value.

(ii) the same optimal solution but different objective function values.
(iii) different optimal solutions but same objective function value.
(iv) same or different solution profile depending on the role of the constraints

in the solutions.
(g) Consider the following LP problem:

max 12x + 10y
s.t. 4x + 3y ≤ 480,

2x + 3y ≤ 360,
x, y ≥ 0.

Which of the following points (x, y) is not in the feasible region?
(i) (30, 60).

(ii) (105, 0).
(iii) (0, 110).
(iv) (100, 10).

(v) None of the above.

(h) In any graphically solvable LP problem, if two feasible points exist, then any
nonnegative weighted average of these points (with weights summing up to 1)
is also feasible.

(i) True. (ii) False.
(i) In a two-variable graphical LP problem, if the coefficient of one of the variables

in the objective function is changed (while the other remains fixed), then the
slope of the objective function expression will change.
(i) True. (ii) False.

(j) Al-Akhawayn Inc. engages in the production of two printer variants, denoted
as “regular” and “high-speed.” The regular printers consume 2 units of recy-
cled plastic per unit of production, while the high-speed printers utilize 1 unit
of recycled plastic per unit manufactured. As part of its commitment to sustain-
ability, Al-Akhawayn ensures that a minimum of 5000 units of recycled plastic
are used each month. The manufacturing process requires a crucial machine,
with each unit of regular printers demanding 5 units of machine time and each
unit of high-speed printers necessitating 3 units of machine time. The total
available machine time per month is limited to 10,000 units. Given this context,
we can represent the number of units of regular printers produced per month as
x1 and the number of units of high-speed printers produced per month as x2.
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By imposing these constraints, along with the nonnegativity constraints, we
can identify one of the feasible corner points as (assuming the first number in
the parenthesis is x1 and the second number in the parenthesis is x2):
(i) (0, 0).

(ii) (2000, 0).
(iii) None exists.
(iv) (0, 5000).

(v) (2500, 0).

(k) If a graphically solvable LP problem is unbounded, then it can always be con-
verted to a regular bounded problem by removing a constraint.

(i) True. (ii) False.
(l) A point that satisfies all of a problem’s constraints simultaneously is a(n):

(i) optimal solution.
(ii) corner point.

(iii) intersection of the profit line and a constraint.
(iv) intersection of two or more constraints.
(v) None of the above.

(m) In a two-variable graphical LP problem, if the RHS of one of the constraints
is changed (keeping all other things fixed) then the plot of the corresponding
constraint will move in parallel to its old plot.
(i) True. (ii) False.

(n) Two models of a product – Regular (x) and Deluxe (y) – are produced by a com-
pany. An LP model is used to determine the production schedule. The formu-
lation is as follows:

max 50x + 60y (maximum profit)
s.t. 8x + 10y ≤ 800 (labor hours),

x + y ≤ 120 (total units demanded),
4x + 5y ≤ 500 (raw materials),

x, y ≥ 0 (nonnegativity).

The optimal solution is x = 100, y = 0. How many units of the labor hours must
be used to produce this number of units?

(i) 400.
(ii) 200.

(iii) 500.
(iv) 5000.

(v) None of the above.

(o) LP theory states that the optimal solution to any problem will lie at:
(i) the origin.

(ii) a corner point of the feasible region.
(iii) the highest point of the feasible region.
(iv) the lowest point in the feasible region.
(v) none of the above.

(p) The dual of an LP problem with maximized objective function, all≤ constraints
and nonnegative variables, has minimized objective function, all ≥ constraints
and nonnegative decision variables.
(i) True. (ii) False.
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(q) The two objective functions (max 5x + 7y, and min −15x − 21y) will produce
the same solution to an LP problem.
(i) True. (ii) False.

(r) In order for an LP problem to have a unique solution, the solution must exist

(i) at the intersection of the nonnegativity constraints.
(ii) at the intersection of the objective function and a constraint.

(iii) at the intersection of two or more constraints.
(iv) none of the above.

(s) If a minimization problem has an objective function of 2x1 + 5x2, which of the
following corner points is the optimal solution?

(i) (0, 2).
(ii) (0, 3).

(iii) (3, 3).
(iv) (1, 1).

(v) (2, 0).

(t) In an LP problem with a nonempty feasible region, when the objective function
is parallel to one of the constraints, then

(i) the solution is not optimal.
(ii) multiple optimal solutions may exist.

(iii) a single corner point solution exists.
(iv) no feasible solution exists.
(v) none of the above.

(u) An LP problem cannot have

(i) no optimal solutions.
(ii) exactly two optimal solutions.

(iii) as many optimal solutions as there are decision variables.
(iv) an infinite number of optimal solutions.
(v) none of the above.

10.2 A homemaker intends to create a blend of two food types, denoted as F1 and F2,
with the objective of ensuring that the vitamin composition of the mixture contains
a minimum of 8 units of vitamin A and 11 units of vitamin B. The cost of Food F1
is 60 per kg, while the cost of Food F2 is 80 per kg. Food F1 contains 3 units per kg
of vitamin A and 5 units per kg of vitamin B, while Food F2 contains 4 units per
kg of vitamin A and 2 units per kg of vitamin B. Formulate this problem as an LP
problem with the objective of minimizing the cost of the mixture.

10.3 A baker possesses 30 ounces of flour and 5 packages of yeast. For each loaf of bread,
5 ounces of flour and 1 package of yeast are required. The baker can sell each loaf of
bread for 30 cents. Additionally, the baker has the option to purchase extra flour at
a rate of 4 cents per ounce or sell any remaining flour at the same price. Formulate
this an LP problem that can be used to assist the baker in maximizing profits, which
are calculated as revenues minus costs.
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10.4 A farmer owns a 126-acre farm and cultivates Radish, Onion, and Potato. When
he sells his entire harvest in the market, he earns 5 per kg for Radish, 4 per kg for
Onion, and 5 per kg for Potato. The average yield on his farm is 1500 kg of Radish
per acre, 1800 kg of Onion per acre, and 1200 kg of Potato per acre. To grow 100 kg
of Radish, 100 kg of Onion, and 80 kg of Potato, he needs to spend 12.5 on water.
The labor requirement to cultivate each crop is 6 man-days per acre for Radish and
Potato and 5 man-days per acre for Onion. He has a total of 500 man-days of labor
available at a rate of 40 per man-day. Write an LP model that can help the farmer
maximize his total profit.

10.5 Use the graphical method to solve the following LP problem.

min z = 15x1 + 10x2
s.t. 0.25x1 + x2 ≤ 65,

1.25x1 +0.5x2 ≤ 90,
x1 + x2 ≤ 85,

x1, x2 ≥ 0.

10.6 A company manufactures two products, denoted as X and Y, with a combined daily
production capacity of 9 tons. Both products, X and Y, necessitate the same produc-
tion capacity. The company has a standing contract to deliver a minimum of 2 tons
of X and 3 tons of Y per day to another business. The production of one ton of X
consumes 20 machine hours, while one ton of Y requires 50 machine hours. The
maximum daily available machine hours amount to 360. The company can sell all
its output, and it earns a profit of JD 80 per ton for X and JD 120 per ton for Y.
(a) Formulate this as an LP problem that can be used to maximize the total profit.
(b) Solve this optimization problem graphically.

10.7 A small paint company produces two paint types, labeled as P1 and P2, using two
raw materials, denoted as M1 and M2. The table shown below contains the essential
data for this scenario.

According to a market survey, the highest daily demand for product P2 is limited
to 2 tons. Additionally, the daily demand for product P1 should not surpass that of
P2 by more than 1 ton.

Tons of raw material per ton of paints produced

P1 P2 Availability

M1 6 4 24

M2 1 2 6

Profit per ton (in $) 500 400
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(a) Write an LP formulation for the problem to maximize the total daily profit
(in $).

(b) Solve the LP model obtained in item (a) using the graphical method.
(c) If the number of tons to be produced for P2 is restricted to be integer-valued,

the problem obtained in item (a) is called a mixed integer program. Sketch its
feasible region and solve it graphically.

(d) If the number of tons to be produced for P1 and P2 are both restricted to be
integer-valued, the problem obtained in item (a) becomes a pure integer pro-
gram. Sketch its feasible region and solve it graphically.

10.8 Use the graphical method to solve the following optimization problems.

(a) min 5x + 7y
s.t. x + 3y ≥ 6,

5x + 2y ≥ 10,
y ≤ 4,

x, y ≥ 0.

(b) max 5x + 4y
s.t. 6x + 4y ≤ 24,

x + 2y ≤ 6,
−x + y ≤ 1,

y = 2,
x, y ≥ 0.

(c) max x2
s.t. −x1 + x2 ≤ 1,

3x1 + 2x2 ≤ 12,
2x1 + 3x2 ≥ 12,
x1, x2 ≥ 0,
x1, x2 ∈ ℤ.

10.9 Consider the following LP problem.

max z = 5x1+ 4x2
s.t. 3x1+ 2x2 ≤ 12,

x1+ 2x2 ≤ 6,
−x1+ x2 ≤ 1,

x2 ≤ 2,
x1, x2 ≥ 0.

Sketch the feasible region and solve it graphically for each of the following cases:
(a) The variable x2 is restricted to be integer-valued; in this case the problem

becomes a mixed integer program.
(b) The variables x1 and x2 are both restricted to be integer-valued; in this case, the

problem becomes a pure integer program.

10.10 Transform the following LP into the standard form.

min z = 2x1 − 4x2 + 5x3 − 30
s.t. 3x1 + 2x2 − x3 ≥ 10,

−2x1 + 4x3≤ 35,
4x1 − x2 ≤ 20,

x1 ≤ 6, x2 ≤ 8, x3 ≤ 10.
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10.11 Prove item (b) in Corollary 10.5.

10.12 Find the feasible solution (x1; x2) for the original LP problem in Example 10.16
given the feasible solution (x1; x+2 ; x−2 ; x3) = (4; 0; 1∕3; 2∕3) to the same problem in
the standard form.

10.13 Choose the correct answer for each of the following multiple-choice questions/
items.
(a) A two-variable LP problem cannot be solved by the simplex method.

(i) True. (ii) False.
(b) If, when we are using a simplex table to solve a maximization problem, we find

that the ratios for determining the pivot row are all negative, then we know that
the solution is:
(i) unbounded.

(ii) feasible.
(iii) degenerate.
(iv) optimal.

(v) none of the above.

(c) In converting a greater-than-or-equal constraint for use in a simplex table, we
must add:
(i) an artificial variable.

(ii) a slack variable.
(iii) a slack and an artificial variable.
(iv) an excess and an artificial variable.
(v) a slack and an excess variable.

(d) For a minimization problem using a simplex table, we know we have reached
the optimal solution when the row R0:

(i) has no numbers in it.
(ii) has no positive numbers in it.

(iii) has no negative numbers in it.

(iv) has no nonzero numbers in it.
(v) none of the above.

(e) A feasible solution requires that all artificial variables are:
(i) greater than zero.

(ii) less than zero.
(iii) equal to zero.

(iv) there are no special requirements on artificial
variables; they may take on any value.

(v) none of the above.
(f) If the right-hand side of a constraint is changed, the feasible region will not be

affected and will remain the same.
(i) True. (ii) False.

(g) With Bland’s rule, the simplex algorithm solves feasible linear minimization
problems without cycling when:

(i) we choose the rightmost nonbasic column with a negative cost to select
the entering variable.

(ii) we choose the rightmost nonbasic column with a negative cost to select
the leaving variable.

(iii) we choose the leftmost nonbasic column with a negative cost to select the
entering variable.
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(iv) we choose the leftmost nonbasic column with a negative cost to select the
leaving variable.

10.14 Use the simplex tableau method to solve the following maximization problems.

(a) max z = x1 + 1.5x2
s.t. 2x1 + 4x2 ≤ 12,

3x1 + 2x2 ≤ 10,
x1, x2 ≥ 0.

(b) max z = 3x1 + 5x2 + 4x3
s.t. 2x1 + 3x2 ≤ 8,

2x2 + 5x3 ≤ 10,
3x1 + 2x2 + 4x3 ≤ 15,
x1, x2, x3 ≥ 0.

(c) max z = 2x1 − x2 + x3
s.t. 3x1 + x2 + x3 ≤ 6,

x1 + x2 + 2x3 ≤ 1,
x1 + x2 − x3 ≤ 2,
x1, x2, x3 ≥ 0.

(d) max z = 60x1 + 30x2 + 20x3
s.t. 8x1 + 6x2 + x3 ≤ 48,

4x1 + 2x2 + 1.5x3 ≤ 20,
2x1 + 1.5x2 + 0.5x3 ≤ 8,
x2 ≤ 5, x1, x2, x3 ≥ 0.

10.15 Consider the maximization problem presented by the following tableau. The
parameters a and b are unknown.

x1 x2 s1 s2 s3 rhs
0 0 17 −3 + 2a 0 10
1 0 3 −1 0 2
0 1 4 a 0 2
0 0 1 b 1 6

For each of the following cases, explicitly discuss how many optimal solutions, if
any, there are to the LP problem. (If the LP is unbounded state that).
(a) a = −2 and b = 0. (b) a = 2 and b = −1. (c) a = 3∕2 and b = 1.

10.16 Consider the following tableau of the simplex method for a maximization LP
problem

z x1 x2 x3 x4 x5 x6 rhs
1 0 0 0 c1 c2 c3 z
0 0 −2 a3 a5 −1 0 0
0 1 a1 0 −3 0 a7 2
0 0 a2 a4 −4 a6 a8 b

(a) There have to be three basic variables. Find them and give conditions on (all or
some of) the unknowns c1, c2, c3, a1, a2,… , a8 that make these variables basic.

(b) Give a condition on b that makes the LP feasible and conditions on c1, c2, and
c3 that make the LP optimal.

(c) Do we have alternative optimal solutions? Justify your answer.
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10.17 Consider the following optimization problem:

max z = 5x1 − x2
s.t. x1 − 3x2 ≤ 1,

x1 − 4x2 ≤ 3,
x1, x2 ≥ 0.

Use the simplex algorithm to show that this LP is an unbounded LP problem.

10.18 Consider the following primal–dual pair of problems.

min 13x1 + 10x2 + 6x3 max 8y1 + 3y2
s.t. 5x1 + x2 + 3x3 = 8, s.t. 5y1 + 3y2 ≤ 13,

3x1 + x2 = 3, y1 + y2 ≤ 10,
x1, x2, x3 ≥ 0; 3y1 ≤ 6.

Show that x★ ≜ (1; 0; 1) and y★ ≜ (2; 1) are optimal in the primal and dual prob-
lems, respectively, and find the corresponding optimal values.

10.19 In Example 10.38, we gave a pair of problems with the property that the primal
and dual problems are both infeasible. Give an example of another pair with this
property.

10.20 Consider the following LP problem.

min z = 5x1 + 3x2 − 2x3
s.t. x1 + x2 + x3 ≥ 4,

2x1 + 3x2 − x3 ≥ 9,
x2 + 3x3 ≤ 5,

x1, x2, x3 ≥ 0.

(a) Write down the corresponding dual LP problem.
(b) Suppose that the simplex method has been applied directly to the primal prob-

lem, and the resulting optimal tableau is:

z x1 x2 x3 e1 a1 e2 a2 s3 rhs
1 −2.5 0 0 0 −M −1.25 1.25 − M −0.75 7.5
0 −0.5 0 1 0 0 0.25 −0.25 0.75 1.5
0 0.5 1 0 0 0 −0.25 0.25 0.25 3.5
0 −1 0 0 1 −1 0 0 1 1

(i) Deduce the optimal solution to the primal problem and the optimal value.
(ii) Deduce the optimal solution to the corresponding dual problem.

10.21 In this exercise, you are required to implement both the revised simplex method
and the tableau simplex method using Octave/Matlab or another programming
tool of your preference. Subsequently, you should conduct performance compar-
isons between your implemented algorithms and established standard optimiza-
tion software. To evaluate your programs, you will apply them to a selection of LP
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problems for which you must generate random data. Finally, you are expected to
present a well-organized and structured solution for this assignment.

(a) Write an Octave function capable of solving an LP in standard form using the
revised simplex method. This function should accept the constraint matrix
A, the right-hand side vector b, and the cost vector c as input and provide
as output an optimal solution vector x along with the optimal cost. In cases
where the LP is unbounded or infeasible, the function should appropriately
indicate this. Additionally, the number of simplex pivots or iterations employed
should be part of the function’s output. The function should offer flexibility
in selecting both entering and leaving variables, with the following options
available:
• For choosing the entering variable, the function should provide the choice

to implement the following options.

– Smallest value rule: After calculating all reduced costs, choose the vari-
able with the smallest value (i.e., the most negative reduced cost) to enter
the basis. This should be the default option.

– Smallest index rule/Bland’s rule: Calculate the reduced costs one at a time
and choose the variable that first gives a negative reduced cost to enter.
In this option, you must not calculate all reduced costs.

• For choosing the leaving variable, the function should implement the fol-
lowing rule:

– Smallest index rule: From among the candidates, the variable xj with the
smallest index j leaves. This should be the default option.

(b) Write an Octave function capable of solving an LP in standard form using the
tableau simplex method. This function should accept the constraint matrix
A, the right-hand side vector b, and the cost vector c as input and provide
as output an optimal solution vector x along with the optimal cost. In cases
where the LP is unbounded or infeasible, the function should appropriately
indicate this. Additionally, the number of simplex pivots or iterations employed
should be part of the function’s output. The function should offer flexibility
in selecting both entering and leaving variables, with the following options
available:

• For choosing the entering variable, the function should provide the choice
to implement the following options:
– Smallest value rule: After calculating all reduced costs, choose the vari-

able with the smallest value (i.e., the most negative reduced cost) to enter
the basis. This should be the default option.

– Smallest index rule/Bland’s rule: After calculating all reduced costs,
choose the variable with the smallest index with a negative reduced cost
to enter the basis.

• For choosing the leaving variable, the function should provide the following
options.
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– Smallest index rule: From among the candidates, the variable xj with the
smallest index j leaves. This should be the default option.

– Lexicographic rule: The leaving variable corresponds to the lexicograph-
ically3 smallest row, after scaling (see (Bertsimas and Tsitsiklis, 1997,
Section 3.4)).

10.22 Use (10.21) to show that xTs + 𝜏𝜅 = 0.

Notes and Sources

The history of optimization and LP is a blend of ancient and modern influences. The origins
of “optimization” can be traced back to ancient civilizations, where early mathematicians
formulated and solved various optimization problems. Early references to optimization can
be found in the works of ancient mathematicians like Euclid and Archimedes, who sought
to maximize or minimize certain geometric quantities. The term “calculus of variations”
was introduced in the 18th century, with pioneers like Leonhard Euler making substantial
contributions to the field. However, the formalization of “linear programming,” a specific
branch of optimization, emerged in the mid-20th century. George Dantzig is often credited
with pioneering LP during World War II, when he developed the simplex method for solving
LP problems (refer to Dantzig (2016)). His work, along with the contributions of John von
Neumann and Leonid Kantorovich, marked a significant turning point in the history of
optimization and LP.

In linear optimization problems, we optimize a linear function subject to linear equality
and inequality constraints. In this chapter, we began our study of linear optimization with
the graphical method. We delved into the intricacies of the geometry of LP. Subsequently,
our focus shifted to the study of the simplex method, which is the most prevalent algorithm
for solving linear optimization problems. After that, we delved into an exploration of the
duality in LP. As we neared the conclusion of this chapter, we addressed the LP problems
that extended beyond the scope of the simplex method by investigating an interior-point
method.

As we conclude this chapter, it is worth noting that the cited references and others, such
as Boyd et al. (2004); Chong and Zak (2013); Nocedal and Wright (2006); Panik (1996);
Roos et al. (1998); Schrijver (1999); Mitchell et al. (2006); Ferris et al. (2007); Griva et al.
(2008); Aggarwal (2020); Vavasis (1999); Luenberger (1973); Bazaraa et al. (2005); Solow
(2008); Chandru and Rao (1999); Golub and Bartels (2007); Pan (2023); Taha (1971); Hillier
and Lieberman (2001); Peressini et al. (2012), and Ackoff and Sasieni (1968), also serve as
valuable sources of information pertaining to the subject matter covered in this chapter.
Exercise 10.21 is due to Krishnamoorthy (2023a).

3 The lexicographic order, also referred to as lexical order or dictionary order, extends the concept of
alphabetical ordering found in dictionaries to sequences of arranged symbols or, in a broader context, to
elements within a totally ordered set.
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