# THE UNIVERSITY OF <br> Department of Mathematics | School of Science <br> Linear Algebra I | Short Syllabus 

Course name and code: Linear Algebra I (0301241).
Credit hours: 3 hrs. Prerequisite: Calculus II (0301102).

| Instructor Name | Prof. Baha Alzalg |
| :--- | :--- |
| Office | Math Bldg, Room 204 |
| Email | b.alzalg @ju.edu.jo |
| Course webpage | sites.ju.edu.jo/sites/alzalg/pages/241.aspx |

Course Description: Systems of linear equations; matrices and matrix operations; homogeneous and nonhomogeneous systems; Gaussian elimination; elementary matrices and a method for finding; determinants; Euclidean vector spaces; linear transformations from to and their properties; general vector spaces; subspaces; basis; dimension; row space; column space; null space of a matrix; rank and nullity; inner product spaces; eigenvalues and diagonalization; linear transformations

Tests and evaluations: The final grade is calculated as follows:

| Midterm Exam (30 \%) | Second Exam (20 \%) | Final Exam (50 \%) |
| :--- | :--- | :--- |

Contents and schedule: The following is a rough plan. I may include and/or delete new topics.

| Topics | Week |
| :---: | :---: |
| SYSTEMS OF LINEAR EQUATIONS AND MATRICES <br> - Introduction to Systems of Linear Equations <br> - Gaussian Elimination <br> - Matrices and Matrix Operations <br> - Inverses; Rules of Matrix Arithmetic <br> - Elementary Matrices and a Method for Finding A ${ }^{-1}$ <br> - Further Results on Systems of Equations and Invertibility <br> - Diagonal, Triangular, and Symmetric Matrices | 1-3 |
| DETERMINANTS <br> - Determinants by Cofactor Expansion <br> - Evaluating Determinants by Row Reduction <br> - Properties of the Determinant Function <br> - A Combinatorial Approach to Determinants | 4-6 |
| GENERAL VECTOR SPACES <br> - Real Vector Spaces <br> - Subspaces <br> - Linear Independence <br> - Basis and Dimension <br> - Row Space, Column Space, and Nullspace <br> - Rank and Nullity | 7-9 |
| INNER PRODUCT SPACES <br> - Inner Products <br> - Angle and Orthogonality in Inner Product Spaces <br> - Orthonormal Bases; Gram-Schmidt Process | 10 |
| EIGENVALUES, EIGENVECTORS <br> - Eigenvalues and Eigenvectors <br> - Diagonalization | 11-12 |
| LINEAR TRANSFORMATIONS <br> - General Linear Transformations <br> - Kernel and Range <br> - Inverse Linear Transformations | 13-15 |

Textbooks: H. Anton and C. Rorres, Elementary Linear Algebra (11 ${ }^{\text {th }}$ edition), Wiley, 2005.

