

Department of Mathematics | School of Science Linear Algebra I | Short Syllabus

Course name and code: Linear Algebra I (0301241). **Credit hours:** 3 hrs. **Prerequisite:** Calculus II (0301102).

Instructor Name	Prof. Baha Alzalg
Office	Math Bldg, Room 204
Email	<u>b.alzalg@ju.edu.jo</u>
Course webpage	sites.ju.edu.jo/sites/alzalg/pages/241.aspx

Course Description: Systems of linear equations; matrices and matrix operations; homogeneous and nonhomogeneous systems; Gaussian elimination; elementary matrices and a method for finding; determinants; Euclidean vector spaces; linear transformations from to and their properties; general vector spaces; subspaces; basis; dimension; row space; column space; null space of a matrix; rank and nullity; inner product spaces; eigenvalues and diagonalization; linear transformations.

Tests and evaluations: The final grade is calculated as follows:

Midterm Exam (30 %)	Second Exam (20 %)	Final Exam (50 %)
---------------------	--------------------	-------------------

Contents and schedule: The following is a rough plan. I may include and/or delete new topics.

Topics		Week
SYSTE	SYSTEMS OF LINEAR EQUATIONS AND MATRICES	
•	Introduction to Systems of Linear Equations	
•	Gaussian Elimination	
•	Matrices and Matrix Operations	
•	Inverses; Rules of Matrix Arithmetic	
•	Elementary Matrices and a Method for Finding A $^{-1}$	
•	Further Results on Systems of Equations and Invertibility	
•	Diagonal, Triangular, and Symmetric Matrices	
DETERMINANTS		4-6
•	Determinants by Cofactor Expansion	
•	Evaluating Determinants by Row Reduction	
•	Properties of the Determinant Function	
•	A Combinatorial Approach to Determinants	
GENERAL VECTOR SPACES		7-9
•	Real Vector Spaces	
•	Subspaces	
•	Linear Independence	
•	Basis and Dimension	
•	Row Space, Column Space, and Nullspace	
•	Rank and Nullity	
INNER PRODUCT SPACES		10
•	Inner Products	
•	Angle and Orthogonality in Inner Product Spaces	
•	Orthonormal Bases; Gram-Schmidt Process	
EIGENVALUES, EIGENVECTORS		11-12
•	Eigenvalues and Eigenvectors	
•	Diagonalization	
LINEAR TRANSFORMATIONS		13-15
•	General Linear Transformations	
•	Kernel and Range	
•	Inverse Linear Transformations	

Textbooks: H. Anton and C. Rorres, *Elementary Linear Algebra* (11th edition), Wiley, 2005.