The cycle-complete graph Ramsey number $r(C_6, K_8) \leq 38$

M.M.M. Jaradat 1,2 and B.M.N. Alzaleq 1

(Received March 21, 2008; Revised October 10, 2008)

Abstract. The cycle-complete graph Ramsey number $r(C_m, K_n)$ is the smallest integer N such that every graph G of order N contains a cycle C_m on m vertices or has independent number $\alpha(G) \geq n$. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that $r(C_m, K_n) = (m-1)(n-1)+1$ for all $m \geq n \geq 3$ (except $r(C_3, K_3) = 6$). In this paper, we show that $r(C_6, K_8) \leq 38$.

AMS 2000 Mathematics Subject Classification. Primary 05C55; Secondary 05C35.

Key words and phrases. Ramsey number; independent set; cycle graph; complete graph.

§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices will be denoted by C_m and the complete graph on n vertices by K_n . The minimum degree of a graph G is denoted by $\delta(G)$. An independent set of vertices of a graph G is a subset of V(G) in which no two vertices are adjacent. The independence number of a graph $G, \alpha(G)$, is the size of the largest independent set.

The cycle-complete graph Ramsey number $r(C_m, K_n)$ is the smallest integer N such that for every graph G of order N, G contains C_m or $\alpha(G) \ge n$. The graph $(n-1)K_{m-1}$ shows that $r(C_m, K_n) \ge (m-1)(n-1)+1$. In one of the earliest contributions to graphical Ramsey theory, Bondy and Erdős [4] proved that for all $m \ge n^2 - 2$, $r(C_m, K_n) = (m-1)(n-1)+1$. After that, Faudree and Schelp [7] and Rosta [14] proved that for $m \ge 4$, $r(C_m, K_3) = 2(m-1)+1$. Later on, Erdős et al. [6] conjectured that $r(C_m, K_n) = (m-1)(n-1)+1$, for all $m \ge n \ge 3$ except $r(C_3, K_3) = 6$. Nikiforov [12] proved the conjecture for $m \ge 4n+2$.

The conjecture was confirmed by Sheng et al. [17] and Bollobás et al. [3] for n = 4 and n = 5, respectively. Recently, the conjecture was proved by Schiermeyer [15] for n = 6. Most recently, Baniabedalruhman [1], Baniabedalruhman and Jaradat [2] and Cheng et al. [5] independently proved that $r(C_7, K_7) = 37$. Also, In [9] and [10], it was proved that $r(C_8, K_7) = 43$ and $r(C_8, K_8) = 50$. In a related work, Radziszowski and Tse [13] showed that $r(C_4, K_7) = 22$ and $r(C_4, K_8) = 26$ and Cheng et al. [5] proved that $r(C_6, K_7)$ = 31. In [11] Jayawardene and Rousseau proved that $r(C_5, K_6) = 21$. Also, Schiermeyer [16] proved that $r(C_5, K_7) = 25$. In this article we prove that $r(C_6, K_8) \leq 38$.

In the rest of this work N(u) stands for the neighbor of the vertex u, which is the set of all vertices of G that are adjacent to u. The symbol N[u] denotes to $N(u) \cup \{u\}$. The symbol $\langle V_1 \rangle_G$ stands for the subgraph of G whose vertex set is $V_1 \subseteq V(G)$ and whose edge set is the set of those edges of G that have both ends in V_1 , and is called the subgraph of G induced by V_1 .

§2. Main Result

It is known, by taking $G = (n-1)K_{m-1}$, that $r(C_m, K_n) \ge (m-1)(n-1)+1$ and so $r(C_6, K_8) \ge 36$. In this section, we prove that $r(C_6, K_8) \le 38$. Our proof consists of a series of seven lemmas.

Lemma 2.1. Let G be a graph of order 38 that contains neither C_6 nor an 8-element independent set. Then $\delta(G) \geq 7$.

Proof. Suppose that G contains a vertex of degree less than 7, say u. Then $|V(G) - N[u]| \ge 38 - 7 = 31$. Since $r(C_6, K_7) = 31$, as a result, G - N[u] has an independent set consisting of 7 vertices. This set with the vertex u is an independent set consisting of 8 vertices. This is a contradiction. \Box

Throughout all Lemmas 2.2 to 2.6, we let G be a graph with minimum degree $\delta(G) \geq 7$ that contains neither C_6 nor an 8-element independent set.

Lemma 2.2. If G contains $K_5 - S_3$, then $|V(G)| \ge 40$.

Proof. Let $U = \{u_1, u_2, u_3, u_4, u_5\}$ be the vertex set of $K_5 - S_3$ where the induced subgraph of $\{u_1, u_2, u_3, u_4\}$ is isomorphic to K_4 . With out loss of generality we may assume that $u_1u_5, u_2u_5 \in E(G)$. Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \leq i \leq 5$. Since $\delta(G) \geq 7$, $|U_i| \geq 3$ for all $1 \leq i \leq 5$. Note that between any two vertices of U there is a path of order 5 except possibly between u_1 and u_2 . Thus, $U_i \cap U_j = \emptyset$ for all $1 \leq i < j \leq 5$ except possibly for (i, j) = (1, 2). Also note that between any two vertices of U there is a path of order 4. Hence, for all $1 \leq i < j \leq 5$ and for all $x \in U_i$ and $y \in U_j$, $xy \notin E(G)$. Similarly, since between any two vertices of

U there is a path of order 3, $N_R(U_i) \cap N_R(U_j) = \emptyset$ for all $1 \leq i < j \leq 5$. Therefore, $(U_i \cup N_R(U_i)) \cap (U_j \cup N_R(U_j)) = \emptyset$ for all $1 \leq i < j \leq 5$ with $(i, j) \neq (1, 2)$. Moreover, since $u_1u_4u_3u_2$ is a path of length 4, $(U_1 \cap N_R(U_2)) = (U_2 \cup N_R(U_1)) = \emptyset$. Let $A = (\{u_1\} \cup U_1 \cup N_R(U_1)) \cup (\{u_2\} \cup U_2 \cup N_R(U_2))$. Note that $|U_i \cup N_R(U_i) \cup \{u_i\}| \geq \delta(G) + 1 = 8$ for each $3 \leq i \leq 5$. Thus, it is suffices to show that $|A| \geq 16$. If $U_1 - U_2 \neq \emptyset$ and $U_2 - U_1 \neq \emptyset$, then $|A| \geq |\{u_1\} \cup (U_1 - U_2) \cup N_R(U_1 - U_2)| + |\{u_2\} \cup (U_2 - U_1) \cup N_R(U_2 - U_1)| \geq 8 + 8 = 16$. Hence, we may assume that $U_1 - U_2 = \emptyset$ or $U_2 - U_1 = \emptyset$. Then $|U_1 \cap U_2| \geq 3$. Note that for any $x, y \in U_1 \cap U_2$, we have that $N_G(x) \cap N_G(y) = \emptyset$ because otherwise G contains C_6 . Hence,

$$\sum_{x \in U_1 \cap U_2} |N_G[x] - \{u_1, u_2\}| \ge 6|U_1 \cap U_2| \ge 18.$$

Lemma 2.3. If G contains K_4 , then G contains $K_5 - S_3$.

Proof. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of K_4 . Let R = G - U and $U_i = N(u_i) \cap V(G)$ for each $1 \le i \le 4$. Since $\delta(G) \ge 7$, $|U_i| \ge 4$ for all $1 \le i \le 4$. Now we consider the following cases:

Case 1. $U_i \cap U_j \neq \emptyset$ for some $1 \leq i < j \leq 4$. Then it is clear that G contains $K_5 - S_3$. In fact, if we take $w \in U_i \cap U_j$, then the induced subgraph $\langle U \cup \{w\} \rangle_G$ contains $K_5 - S_3$.

Case 2. $U_i \cap U_j = \emptyset$ for each $1 \leq i < j \leq 4$. Note that between any two vertices of U there is a path of order 4. Thus for all $1 \leq i < j \leq 4$ and for all $x \in U_i$ and $y \in U_j$, $xy \notin E(G)$. Therefore, at least one of $\langle U_i \rangle_G$ where $1 \leq i \leq 4$ is a complete graph (otherwise, two independent vertices of $\langle U_i \rangle_G$ for each $1 \leq i \leq 4$ form an 8-element independent set, a contradiction). Now, since $|U_i| \geq 4$ for all $1 \leq i \leq 4$, as a result at least one of the induced subgraph $\langle U_i \cup \{u_i\} \rangle_G$ where $1 \leq i \leq 4$ contains K_5 . Hence, G contains $K_5 - S_3$. \Box

Lemma 2.4. If G contains $K_1 + P_4$, then G contains K_4 .

Proof: Let $U = \{u_1, u_2, u_3, u_4, u_5\}$ be the vertex set of $K_1 + P_4$, where u_1 is a K_1 and $P_4 = u_2 u_3 u_4 u_5$. Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 5$. Then as in Lemma 2.2, $|U_i| \ge 3$ for all $1 \le i \le 5$. Note that between any two vertices of $U - \{u_1\}$ there are paths of order 5 and 4. Thus, $U_i \cap U_j = \emptyset$ and $xy \notin E(G)$ for all $x \in U_i$ and $y \in U_j$ for any $2 \le i < j \le 5$. Therefore, $\langle U_i \rangle_G$ is complete graph for some $2 \le i \le 5$ (otherwise, two independent vertices of $\langle U_i \rangle_G$ for each $2 \le i \le 5$ form an 8-element independent set, a contradiction). Now, since $|U_i| \ge 3$ for all $2 \le i \le 5$, at least one induced subgraph $\langle U_i \cup \{u_i\} \rangle_G$ where $2 \le i \le 5$ contains K_4 . Hence, G contains K_4 . \Box

Lemma 2.5. If G contains $K_1 + P_3$, then G contains $K_1 + P_4$ or K_4

Proof. Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of $K_1 + P_3$ where $K_1 = u_1$ and $P_3 = u_2 u_3 u_4$. Now, if $u_2 u_4 \in E(G)$, then $\langle U \rangle_G$ is K_4 . Thus, in the rest of this lemma we may assume that $u_2 u_4 \notin E(G)$. Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \leq i \leq 4$. Since $\delta(G) \geq 7$, $|U_i| \geq 4$ for i = 1, 3and $|U_i| \geq 5$ for i = 2, 4. We now consider the following cases:

Case 1. $U_i \cap U_j = \emptyset$ for all $2 \leq i < j \leq 4$. Note that between any two vertices of U there is a path of order 4. Thus, for all $2 \leq i < j \leq 5$, if $x \in U_i$ and $y \in U_j$, then $xy \notin E(G)$. Hence, either $\alpha(\langle U_2 \rangle_G) \leq 2$ or $\alpha(\langle U_4 \rangle_G) \leq 2$ or $\langle U_3 \rangle_G$ is a complete graph (otherwise, three independent vertices of $\langle U_i \rangle_G$ for each i = 2, 4 and two independent vertices of $\langle U_3 \rangle_G$ form an 8-element independent set, a contradiction). Now, if $\langle U_3 \rangle_G$ is a complete graph, then $\langle U_3 \rangle_G$ contains K_4 because $|U_3| \geq 4$. Also, if $\alpha(\langle U_2 \rangle_G) \leq 2$ or $\alpha(\langle U_4 \rangle_G) \leq 2$, say $\alpha(\langle U_2 \rangle_G) \leq 2$, then $\langle U_2 \rangle_G$ contains either K_3 or P_4 . And so $\langle U_2 \cup \{u_2\}\rangle_G$ contains either K_4 or $K_1 + P_4$.

Case 2. $U_2 \cap U_3 \neq \emptyset$, say $u_5 \in U_2 \cap U_3$. Then G contains $K_1 + P_4$, where u_3 is a K_1 and $P_4 = u_5 u_2 u_1 u_4$.

Case 3. $U_3 \cap U_4 \neq \emptyset$, say $u_5 \in U_3 \cap U_4$. Then G contains $K_1 + P_4$, where u_3 is a K_1 and $P_4 = u_5 u_4 u_1 u_2$.

Case 4. $U_2 \cap U_4 \neq \emptyset$, say $u_5 \in U_2 \cap U_4$. If $u_5 u_3 \in E(G)$, then G contains $K_1 + P_4$ where $K_1 = u_3$ and $P_4 = u_5 u_4 u_1 u_2$. Thus, in the rest of this lemma we assume that $u_5 u_3 \notin E(G)$. Now let $U' = \{u_1, u_2, u_3, u_4, u_5\}, R' = G - U'$ and $U'_i = N(u_i) \cap V(R')$ for each $1 \le i \le 5$. We now have the following: (1) If $U'_2 \cap U'_3 \neq \emptyset$, then we get a similar case to Case 2 and so G contains $K_1 + P_4$. Therefore, in the rest of this case we can assume that $U'_2 \cap U'_3 = \emptyset$. (2) $U'_2 \cap U'_5 = \emptyset$ (otherwise, if $x \in U'_2 \cap U'_5$, then $xu_2u_1u_3u_4u_5x$ is a C_6 , a contradiction). (3) $U'_3 \cap U'_5 = \emptyset$ (otherwise, if $x \in U'_3 \cap U'_5$, then $xu_3u_2u_1u_4u_5x$ is a C_6 , a contradiction). Note that u_1 and u_3 are symmetric in the role. Thus, as in the above, we may assume that $u_5 u_1 \notin E(G)$. This means $|U'_5| \geq 5$. Also, as in the above, we may assume that $U'_1 \cap U'_2 = \emptyset$ and we have that $U'_1 \cap U'_5 = \emptyset$. Similarly, $U'_1 \cap U'_3 = \emptyset$ (because, if $x \in U'_1 \cap U'_3$, then $xu_1u_2u_5u_4u_3x$ is a C_6 , a contradiction). Consequently there is no edge joining u_1 to $U'_2 \cup U'_3 \cup U'_5$. Also, note the following: (I) for each $x \in U'_2$ and $y \in U'_3$, $xy \notin E(G)$ (Otherwise, $xyu_2u_1u_4u_3x$ is a C_6 , a contradiction). (II) for each $x \in U'_2$ and $y \in U'_5$, $xy \notin U'_5$ E(G) (Otherwise, $xyu_2u_3u_4u_5x$ is a C_6 , a contradiction). (III) for each $x \in U'_3$ and $y \in U'_5$, $xy \notin E(G)$ (Otherwise, $xyu_3u_1u_4u_5x$ is a C_6 , a contradiction). Therefore, either $\left\langle U_{2}^{'} \right\rangle_{G}$ is complete or $\left\langle U_{3}^{'} \right\rangle_{G}$ is complete or $\alpha(\left\langle U_{5}^{'} \right\rangle_{G}) \leq 2$ (Otherwise, $\alpha(\left\langle \{u_1\} \cup U'_2 \cup U'_3 \cup U'_5 \right\rangle_C) \ge 1 + 2 + 2 + 3 = 8$, a contradiction). Now, if $\langle U'_2 \rangle_G$ is complete or $\langle U'_3 \rangle_G$ is complete, then G contains K_4 . Also,

if $\alpha(\langle U_5' \rangle_G) \leq 2$, then as above, $\langle U_5' \rangle_G$ contains either K_3 or P_4 . And so $\langle U_5' \cup \{u_5\} \rangle_G$ contains either K_4 or $K_1 + P_4$. \Box

Lemma 2.6. If G contains K_3 , then G contains $K_1 + P_3$ or K_4

Proof. Let $U = \{u_1, u_2, u_3\}$ be the vertex set of K_3 . Let R = G - U and $U_i = N(u_i) \cap V(G)$ for each $1 \leq i \leq 3$. Since $\delta(G) \geq 7$, $|U_i| \geq 5$ for all $1 \leq i \leq 3$. Now we split our work into the following two cases:

Case 1: $U_i \cap U_j \neq \emptyset$ for some $1 \le i < j \le 3$. Then G contains $K_1 + P_3$. The result is obtained.

Case 2: $U_i \cap U_j = \emptyset$ for all $1 \leq i < j \leq 3$. Let $z_i \in U_i$ for each $1 \leq i \leq 3$. Let $Z = \{z_1, z_2, z_3\}$ and $R' = G - (U \cup Z)$. Let $Z_i = N(z_i) \cap V(R')$. If $|E \langle Z \rangle_G| \geq 2$, then $\langle Z \cup U \rangle_G$ contains a cycle of order 6. Thus we may assume that $|E \langle Z \rangle_G| \leq 1$. Then $|Z_i| \geq 5$ for each $1 \leq i \leq 3$. Note that between any two vertices of U there are paths of order 2 and 3. Hence $Z_i \cap Z_j = \emptyset$ and $xy \notin E(G)$ for each $x \in Z_i, y \in Z_j$ and $1 \leq i < j \leq 3$. Now, $\alpha(\langle Z_i \rangle_G) \leq 2$ for some $1 \leq i \leq 3$ (Otherwise, if $\alpha(\langle Z_i \rangle_G) \geq 3$ for each $1 \leq i \leq 3$, $\alpha(\langle Z_1 \cup Z_2 \cup Z_3 \rangle_G) \geq 3 + 3 + 3 = 9$. Thus $\alpha(G) \geq 9$, a contradiction). Without loss of generality we may assume that $\alpha(\langle Z_1 \rangle_G) \leq 2$. By an argument similar to the above and since $|Z_1| \geq 5$, $\langle Z_1 \cup \{z_1\} \rangle_G$ contains either $K_1 + P_4$ or K_4 . Hence, G contains $K_1 + P_3$ or K_4 . \Box

Lemma 2.7. Let G be a graph of order 38 that contains neither C_6 nor an 8-element independent set. Then G contains K_3 .

Proof. Suppose that G does not contain K_3 . Then $|N(u)| \leq 7$ for any $u \in V(G)$ (because otherwise, if u is a vertex with $|N(u)| \geq 8$, then the induced subgraph $\langle N(u) \rangle_G$ does not contain P_2 . Hence, the induced subgraph $\langle N(u) \rangle_G$ is a null graph, and so, $\alpha(G) \geq 8$. This is a contradiction).

Now, for any two independent vertices u_1 and u_2 , $|N[u_1] \cup N[u_2]| \ge 13$ (To see that, suppose that $|N[u_1] \cup N[u_2]| \le 12$. Then $|V(G)| - |N[u_1] \cup N[u_2]| \ge 38 - 12 = 26$. But, $r(C_6, K_6) = 26$, hence $G - \{N[u_1] \cup N[u_2]\}$ contains an independent set of 6 vertices. Thus, this independent set with u_1 and u_2 is an independent set of 8 vertices, a contradiction).

Now, by Lemma 2.1, $\delta(G) \geq 7$. Thus $|N(u_1)| = 7$ and $N(u_1)$ is independent. Similarly, $|N(u_2)| = 7$ and $N(u_2)$ is independent. Hence $|N(u_1) \cap N(u_2)| = |N[u_1] \cap N[u_2]| = |N[u_1]| + |N[u_2]| - |N[u_1] \cup N[u_2]| \leq 3$. Let $N'(u_1) = N(u_1) - (N(u_2) \cap N(u_1))$ and $N'(u_2) = N(u_2) - (N(u_1) \cap N(u_2))$. Then $|N'(u_1)| = |N'(u_2)| \geq 4$. Since $\alpha(G) \leq 7$, we have $|N(X) \cap N'(u_2)| \geq |X|$ for each $X \subseteq N'(u_1)$. Therefore by the Matching Theorem of Hall, there is a perfect matching between $N'(u_1)$ and $N'(u_2)$, which implies that $\langle N'[u_1] \cup N'[u_2] \rangle_G$ contains C_6 where $N'[u_1] = N'(u_1) \cup \{u_1\}$ and $N'[u_2] = N'(u_2) \cup \{u_2\}$. This is a contradiction. \Box **Theorem 2.8.** The cycle-complete Ramsey number $r(C_6, K_8) \leq 38$. *Proof*: We prove it by contradiction. Suppose that G is a graph of order 38 which contains neither C_6 nor an 8-element independent set. Then by Lemma 2.7, G contains K_3 . Also, by Lemma 2.1, $\delta(G) \geq 7$. Thus, by Lemmas 2.6, 2.5, 2.4, 2.3, and 2.2, $|V(G)| \geq 40$. This is a contradiction. Thus, $r(C_6, K_8) \leq 38$. \Box

Acknowledgments. The authors wish to thank the referee whose valuable suggestions have significantly helped to improve the proofs of this article.

References

- A. Baniabedalruhman, On Ramsey number for cycle-complete graphs, M.Sc. Thesis, Yarmouk University, August 2006.
- [2] A. Baniabedalruhman and M.M.M. Jaradat, The cycle-complete graph Ramsey number $r(C_7, K_7)$, Journal of combinatorics, information & system sciences (Accepted).
- [3] B. Bollobás, C. J. Jayawardene, Z. K. Min, C. C. Rousseau, H. Y. Ru, and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, *Australas. J. Combin.*, 22 (2000), 63–72.
- [4] J. A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial Theory, Series B, 14 (1973), 46–54.
- [5] T.C. E. Cheng, Y. Chen, Y. Zhang and C.T. Ng, The Ramsey numbers for a cycle of length six or seven versus a clique of order seven, *Discrete Mathematics*, 307, (2007), 1047–1053
- [6] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory, 2 (1978), 53–64.
- [7] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, *Discrete Mathematics*, 8 (1974), 313–329.
- [8] G. R. Hendry, Ramsey numbers for graphs with five vertices, Journal of Graph Theory, 13 (1989), 245–248.
- [9] M. M. M. Jaradat and B. Alzaliq, The cycle-complete graph Ramsey number $r(C_8, K_8)$. SUT Journal of Mathematics 43 (2007), 85–98.
- [10] M. M. M. Jaradat and A.M.M. Baniabedalruhman, The cycle-complete graph Ramsey number $r(C_8, K_7)$. International Journal of pure and applied mathematics, 41 (2007), 667–677.
- [11] C. J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five versus a complete graph of order six, J. Graph Theory, 35 (2000), 99–108.

- [12] V. Nikiforov, The cycle-complete graph Ramsey numbers, Combin. Probab. Comput. 14 (2005), no. 3, 349-370.
- [13] S. P. Radziszowski and K.-K. Tse, A computational approach for the Ramsey numbers $r(C_4, K_n)$, J. Comb. Math. Comb. Comput., 42 (2002), 195–207.
- [14] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős, I and II, Journal of Combinatorial Theory, Series B 15 (1973), 94–120.
- [15] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r(C_n, K_6)$, J. Graph Theory, 44 (2003), 251–260.
- [16] I. Schiermeyer, The cycle-complete graph Ramsey number $r(C_5, K_7)$, Discussiones Mathematicae Graph Theory 25 (2005) 129–139.
- [17] Y. J. Sheng, H. Y. Ru and Z. K. Min, The value of the Ramsey number $r(C_n, K_4)$ is 3(n-1) + 1 $(n \ge 4)$, Australas. J. Combin., 20 (1999), 205–206.

¹Department of Mathematics Yarmouk University Irbid-Jordan mmjst4@yu.edu.jo; alzaleq@yahoo.com ²Department of Mathematics and Physics Qatar University Doha-Qatar mmjst4@qu.edu.qa