Cycle-Complete Graph Ramsey Numbers

$$
r\left(C_{4}, K_{9}\right), r\left(C_{5}, K_{8}\right) \leq 33
$$

M.M.M. Jaradat
(Department of Mathematics, Yarmouk University, Irbid-Jordan)
(Department of Mathematics and Physics, Qatar University, Doha-Qatar)
Email: mmjst4@yu.edu.jo, mmjst4@qu.edu.qa
B.M.N. Alzaleq
(Department of Mathematics, Yarmouk University, Irbid-Jordan)
Email: alzaleq@yahoo.com

Abstract

For an integer $k \geq 1$, a cycle-complete graph Smarandache-Ramsey number $r_{s^{k}}\left(C_{m}, K_{n}\right)$ is the smallest integer N such that every graph G of order N contains k cycles, C_{m}, on m vertices or the complement of G contains k complete graph, K_{n}, on n vertices. If $k=1$, then the Smarandache-Ramsey number $r_{s^{k}}\left(C_{m}, K_{n}\right)$ is nothing but the classical Ramsey number $r\left(C_{m}, K_{n}\right)$. Radziszowski and Tse proved that $r\left(C_{4}, K_{9}\right) \geq 30$. Also, By considering the known graph $G=7 K_{4}$, we have that $r\left(C_{5}, K_{8}\right) \geq 29$. In this paper we give an upper bound of $r\left(C_{4}, K_{9}\right)$ and $r\left(C_{5}, K_{8}\right)$.

Key Words: (Smarandache-)Ramsey number; independent set; cycle; complete graph.
AMS(2000): 05C55, 05C35.

§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices will be denoted by C_{m} and the complete graph on n vertices by K_{n}. The minimum degree of a graph G is denoted by $\delta(G)$. An independent set of vertices of a graph G is a subset of $V(G)$ in which no two vertices are adjacent. The independence number of a graph $G, \alpha(G)$, is the size of the largest independent set.

For an integer $k \geq 1$, a Smarandache-Ramsey number $r_{s^{k}}(H, F)$ is the smallest integer N such that every graph G of order N contains k graph H, or the complement of G contains k graph F. If $k=1$, then the Smarandache-Ramsey number $r_{s^{k}}(H, F)$ is nothing but the classical Ramsey number $r(H, F) . r\left(C_{m}, K_{n}\right)$ is called the cycle-complete graph Ramsey number. In one of the earliest contributions to graphical Ramsey theory, Bondy and Erdős [3] proved that for all $m \geq n^{2}-2, r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$. The restriction in the above result was improved by Nikiforov [10] when he proved the equality for $m \geq 4 n+2$. Erdős et al. [5] conjectured that $r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1$, for all $m \geq n \geq 3$ except $r\left(C_{3}, K_{3}\right)=6$. The conjectured were

[^0]confirmed for some $n=3,4,5$ and 6 (see [2], [6], [12], and [14]). Moreover, in [7] and [8] the conjecture was proved for $m=n=8$, and $m=8$ with $n=7$. Also, the case $n=m=7$ was proved independently by Baniabedalruhman and Jaradat [1] and Cheng et al. [4].

In a related work, Radziszowski and Tse [11] showed that $r\left(C_{4}, K_{7}\right)=22, r\left(C_{4}, K_{8}\right)=26$ and $r\left(C_{4}, K_{9}\right) \geq 30$. Also, In [8] Jayawardene and Rousseau proved that $r\left(C_{5}, K_{6}\right)=21$. Recently, Schiermeyer [13] and Cheng et al. [4] proved that $r\left(C_{5}, K_{7}\right)=25$ and $r\left(C_{6}, K_{7}\right)=25$, respectively. In this article we prove the following Theorems:

Theorem A The complete-cycle Ramsey number $r\left(C_{4}, K_{9}\right) \leq 33$.
Theorem B The complete-cycle Ramsey number $r\left(C_{5}, K_{8}\right) \leq 33$.
In the rest of this work, $N(u)$ stands for the neighbor of the vertex u which is the set of all vertices of G that are adjacent to u and $N[u]=N(u) \cup\{u\}$. For a subgraph R of the graph G and $U \subseteq V(G), N_{R}(U)$ is defined as $\left(\cup_{u \in U} N(u)\right) \cap V(R)$. Finally, $\left\langle V_{1}\right\rangle_{G}$ stands for the subgraph of G whose vertex set is $V_{1} \subseteq V(G)$ and whose edge set is the set of those edges of G that have both ends in V_{1} and is called the subgraph of G induced by V_{1}.

§2. Proof of Theorem A

We prove our result using the contradiction. Suppose that G is a graph of order 33 which contains neither C_{4} nor a 9 -element independent set. Then we have the following:

1. $\delta(G) \geq 7$. Assume that u is a vertex with $d(u) \leq 6$. Then $|V(G)-N[u]| \geq 33-7=26$. But $r\left(C_{4}, K_{8}\right)=26$. Hence, $G-N[u]$ contains an 8 -element independent set. This set with u form a 9 -element independent set. That is a contradiction.
2. G contains no K_{3}. Suppose that G contains K_{3}. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be the vertex set of K_{3}. Also, let $R=G-\left\{u_{1}, u_{2}, u_{3}\right\}$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$. Then $U_{i} \cap U_{j}=\varnothing$ because otherwise G contains C_{4}. Also, for each $x \in U_{i}$ and $y \in U_{i}$, we have that $x y \notin E(G)$ because otherwise G contains C_{4}. Now, since $\delta(G) \geq 7,\left|U_{i}\right| \geq 5$. Since $r\left(P_{3}, K_{3}\right)=5$, as a result either $\left\langle U_{i}\right\rangle_{G}$ contains P_{3} for some $i=1,2,3$ and so G contains C_{4} or $\left\langle U_{i}\right\rangle_{G}$ does not contains P_{3} for each $i=1,2,3$ and so each of which contains a 3 -element independent set, Thus, three independent set of each consists a 9 -element independent set. This is a contradiction.

Now, let u be a vertex of G. Let $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ where $r \geq 7$. Since G contains no K_{3}, as a result $\langle N(u) \cup\{u\}\rangle_{G}$ forms a star. And so, $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is independent. Now, let $N\left(u_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}$ where $k \geq 6$. For the same reasons, $\left\langle N\left(u_{1}\right) \cup\left\{u_{1}\right\}\right\rangle_{G}$ forms a star and so $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent. Since G contains no K_{3} and no C_{4}. Then $\left\{u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an independent set. That is a contradiction. The proof is complete.

§3. Proof of Theorem B

We prove our result by using the contradiction. Assume that G is a graph of order 33 which
contains neither C_{5} nor an 8 -element independent set. By an argument similar to the one in Theorem A and by noting that $r\left(C_{5}, K_{8}\right)=25$, we can show that $\delta(G) \geq 8$. Now, we have the following:

1. G contains K_{3}. Suppose that G does not contain K_{3}. Let $u \in V(G)$ and $r=|N(u)|$. Then the induced subgraph $<N(u)>_{G}$ does not contain P_{2}. Hence $<N(u)>_{G}$ is a null graph with r vertices. Since $\alpha(G) \leq 7$, as a result $r \leq 7$. Therefore, $8 \leq \delta(G) \leq r \leq 7$. That is a contradiction.
2. G contains $K_{4}-e$. Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ be the vertex set of K_{3}. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 3$. Since $\delta(G) \geq 8,\left|U_{i}\right| \geq 6$ for all $1 \leq i \leq 3$. Now we have the following two cases:

Case 1: $\quad U_{i} \cap U_{j} \neq \varnothing$ for some $1 \leq i<j \leq 3$, say $w \in U_{i} \cap U_{j}$. Then it is clear that G contains $K_{4}-e$. In fact, the induced subgraph $\langle U \cup\{w\}\rangle_{G}$ contains $K_{4}-e$.
Case 2: $U_{i} \cap U_{j}=\varnothing$ for each $1 \leq i<j \leq 3$. Then $\alpha\left(\left\langle U_{i}\right\rangle_{G}\right) \leq 2$, for some $1 \leq i \leq 3$. To see that suppose that $\alpha\left(\left\langle U_{i}\right\rangle_{G}\right) \geq 3$ for each $1 \leq i \leq 3$. Since between any two vertices of U there is a path of order 3 , as a result for any $x \in U_{i}$ and $y \in U_{j}$, we have $x y \notin E(G), 1 \leq i<j \leq 3$ because otherwise G contains C_{5}. Therefore, $\alpha\left(\left\langle U_{1} \cup U_{2} \cup U_{3}\right\rangle_{G}\right) \geq 3+3+3=9$. and so $\alpha(G) \geq 9$, which is a contradiction.
Now, since $\left|U_{i}\right| \geq 6$ and $\alpha\left(\left\langle U_{i}\right\rangle_{G}\right) \leq 2$, for some $1 \leq i \leq 3$ and since $r\left(K_{3}, K_{3}\right)=6$ as a result the induced subgraph $\left\langle U_{i}\right\rangle_{G}$ contains K_{3}. And so $\left\langle U_{i} \cup\left\{u_{i}\right\}\right\rangle_{G}$ contains K_{4}. Hence, G contains $K_{4}-e$.
3. G contains K_{4}. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set of $K_{4}-e$, where the induced subgraph of $\left\{u_{1}, u_{2}, u_{3}\right\}$ is isomorphic to K_{3}. Without loss of generality we may assume that $u_{1} u_{4}, u_{2} u_{4} \in E(G)$. We consider the case where $u_{3} u_{4} \notin E(G)$ because otherwise the result is obtained. Let $R=G-U$ and $U_{i}=N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 4$. Then as in $\mathbf{2},\left|U_{i}\right| \geq 5$ for $i=1,2$ and $\left|U_{i}\right| \geq 6$ for $i=3,4$. To this end, we have that $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 4$ except possibly for $i=1$ and $j=2$ (To see that suppose that $w \in U_{i} \cap U_{j}$ for some $1 \leq i<j \leq 4$ with $i \neq 1$ or $j \neq 2$. Then we consider the following cases:
(1) $i=3$ and $j=4$. Then $u_{3} w u_{4} u_{1} u_{2} u_{3}$ is a cycle of order 5 , a contradiction.
(2) $i=3$ and $j=2$. Then $u_{3} w u_{2} u_{4} u_{1} u_{3}$ is a cycle of order 5 , a contradiction.
(3) i, j are not as in the above cases. Then by similar argument as in (2) G contains a C_{5}. This is a contradiction.
Now, By arguing as in Case 2 of $2, \alpha\left(\left\langle U_{2}\right\rangle_{G}\right) \leq 1$ or $\alpha\left(\left\langle U_{i}\right\rangle_{G}\right) \leq 2$, for $i=3$ or 4 . And so, the induced subgraph $\left\langle U_{i}\right\rangle_{G}$ contains K_{3} for some $2 \leq i \leq 4$. Thus, G contains K_{4}.
To this end, let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set of K_{4}. Let $R=G-U$ and $U_{i}=$ $N\left(u_{i}\right) \cap V(R)$ for each $1 \leq i \leq 4$. Since $\delta(G) \geq 8,\left|U_{i}\right| \geq 5$ for all $1 \leq i \leq 4$. Since there is a path of order 4 joining any two vertices of U, as a result $U_{i} \cap U_{j}=\varnothing$ for all $1 \leq i<j \leq 4$ (since otherwise, if $w \in U_{i} \cap U_{j}$ for some $1 \leq i<j \leq 4$, then the concatenation of the u_{i} - u_{j} path of order 4 with $u_{i} w u_{j}$ is a cycle of order 5 , a contradiction). Similarly, since there is a path of order 3 joining any two vertices of U, as a result for all $1 \leq i<j \leq 4$ and for all $x \in U_{i}$ and $y \in U_{j}, x y \notin E(G)$ (otherwise, if there are $1 \leq i<j \leq 4$ such that $x \in U_{i}$ and $y \in U_{j}$, and $x y \in E(G)$, then the concatenation of the $u_{i}-u_{j}$ path of order 3 with $u_{i} x y u_{j}$ is a cycle of
order 5 , a contradiction). Also, since there is a path of order 2 joining any two vertices of U, as a result $N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)=\varnothing, 1 \leq i<j \leq 4$ (otherwise, if there are $1 \leq i<j \leq 4$ such that $w \in N_{R}\left(U_{i}\right) \cap N_{R}\left(U_{j}\right)$, then the concatenation of the $u_{i}-u_{j}$ path of order 2 with $u_{i} x w y u_{j}$ where $x \in U_{i}$ and $y \in U_{j}$, and $x w, y w \in E(G)$ is a cycle of order 5 , a contradiction). Therefore, $\left|U_{i} \cup N_{R}\left(U_{i}\right) \cup\left\{u_{i}\right\}\right| \geq \delta(G)+1$. Thus, $|V(G)| \geq 4(\delta(G)+1) \geq 4(8+1)=4.9=36$. That contradicts the fact that the order of G is 33 .

References

[1] A. Baniabedalruhman and M.M.M. Jaradat, The cycle-complete graph Ramsey number $r\left(C_{7}, K_{7}\right)$. Journal of combinatorics, information \mathcal{J} system sciences (Accepted).
[2] B. Bollobás, C. J. Jayawardene, Z. K. Min, C. C. Rousseau, H. Y. Ru, and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, Australas. J. Combin., 22 (2000), 63-72.
[3] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial Theory, Series B, 14 (1973), 46-54.
[4] T.C. E. Cheng, Y. Chen, Y. Zhang and C.T. Ng, The Ramsey numbers for a cycle of length six or seven versus a clique of order seven, Discrete Mathematics, 307 (2007), 1047-1053.
[5] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory, 2 (1978), 53-64.
[6] R.J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics, 8 (1974), 313-329.
[7] M.M.M. Jaradat and B. Alzaliq, The cycle-complete graph Ramsey number $r\left(C_{8}, K_{8}\right)$. SUT Journal of Mathematics 43 (2007), 85-98.
[8] M.M.M. Jaradat and A.M.M. Baniabedalruhman, The cycle-complete graph Ramsey number $r\left(C_{8}, K_{7}\right)$. International Journal of pure and applied mathematics, 41 (2007), 667-677.
[9] C.J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five versus a complete graph of order six, J. Graph Theory, 35 (2000), 99-108.
[10] V. Nikiforov, The cycle-complete graph Ramsey numbers, Combin. Probab. Comput. 14 (2005), no. 3, 349-370.
[11] S. P. Radziszowski and K.-K. Tse, A computational approach for the Ramsey numbers $r\left(C_{4}, K_{n}\right)$, J. Comb. Math. Comb. Comput., 42 (2002), 195-207.
[12] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r\left(C_{n}, K_{6}\right)$, J. Graph Theory, 44 (2003), 251-260.
[13] I. Schiermeyer, The cycle-complete graph Ramsey number $r\left(C_{5}, K_{7}\right)$, Discussiones Mathematicae Graph Theory 25 (2005) 129-139.
[14] Y.J. Sheng, H. Y. Ru and Z. K. Min, The value of the Ramsey number $r\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Ausralas. J. Combin., 20 (1999), 205-206.

[^0]: ${ }^{1}$ Received December 12, 2008. Accepted January 16, 2009.

