Cycle-Complete Graph Ramsey Numbers

 $r(C_4, K_9), r(C_5, K_8) \le 33$

M.M.M. Jaradat

(Department of Mathematics, Yarmouk University, Irbid-Jordan) (Department of Mathematics and Physics, Qatar University, Doha-Qatar) Email: mmjst4@yu.edu.jo, mmjst4@qu.edu.qa

B.M.N. Alzaleq

(Department of Mathematics, Yarmouk University, Irbid-Jordan) Email: alzaleq@yahoo.com

Abstract For an integer $k \ge 1$, a cycle-complete graph Smarandache-Ramsey number $r_{s^k}(C_m, K_n)$ is the smallest integer N such that every graph G of order N contains k cycles, C_m , on m vertices or the complement of G contains k complete graph, K_n , on n vertices. If k = 1, then the Smarandache-Ramsey number $r_{s^k}(C_m, K_n)$ is nothing but the classical Ramsey number $r(C_m, K_n)$. Radziszowski and Tse proved that $r(C_4, K_9) \ge 30$. Also, By considering the known graph $G = 7K_4$, we have that $r(C_5, K_8) \ge 29$. In this paper we give an upper bound of $r(C_4, K_9)$ and $r(C_5, K_8)$.

Key Words: (Smarandache-)Ramsey number; independent set; cycle; complete graph. AMS(2000): 05C55, 05C35.

§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices will be denoted by C_m and the complete graph on n vertices by K_n . The minimum degree of a graph G is denoted by $\delta(G)$. An independent set of vertices of a graph G is a subset of V(G) in which no two vertices are adjacent. The independence number of a graph G, $\alpha(G)$, is the size of the largest independent set.

For an integer $k \ge 1$, a Smarandache-Ramsey number $r_{s^k}(H, F)$ is the smallest integer Nsuch that every graph G of order N contains k graph H, or the complement of G contains kgraph F. If k = 1, then the Smarandache-Ramsey number $r_{s^k}(H, F)$ is nothing but the classical Ramsey number r(H, F). $r(C_m, K_n)$ is called the cycle-complete graph Ramsey number. In one of the earliest contributions to graphical Ramsey theory, Bondy and Erdős [3] proved that for all $m \ge n^2 - 2$, $r(C_m, K_n) = (m-1)(n-1)+1$. The restriction in the above result was improved by Nikiforov [10] when he proved the equality for $m \ge 4n+2$. Erdős et al. [5] conjectured that $r(C_m, K_n) = (m-1)(n-1)+1$, for all $m \ge n \ge 3$ except $r(C_3, K_3) = 6$. The conjectured were

¹Received December 12, 2008. Accepted January 16, 2009.

confirmed for some n = 3, 4, 5 and 6 (see [2], [6], [12], and [14]). Moreover, in [7] and [8] the conjecture was proved for m = n = 8, and m = 8 with n = 7. Also, the case n = m = 7 was proved independently by Baniabedalruhman and Jaradat [1] and Cheng et al. [4].

In a related work, Radziszowski and Tse [11] showed that $r(C_4, K_7) = 22$, $r(C_4, K_8) = 26$ and $r(C_4, K_9) \ge 30$. Also, In [8] Jayawardene and Rousseau proved that $r(C_5, K_6) = 21$. Recently, Schiermeyer [13] and Cheng et al. [4] proved that $r(C_5, K_7) = 25$ and $r(C_6, K_7) = 25$, respectively. In this article we prove the following Theorems:

Theorem A The complete-cycle Ramsey number $r(C_4, K_9) \leq 33$.

Theorem B The complete-cycle Ramsey number $r(C_5, K_8) \leq 33$.

In the rest of this work, N(u) stands for the neighbor of the vertex u which is the set of all vertices of G that are adjacent to u and $N[u] = N(u) \cup \{u\}$. For a subgraph R of the graph G and $U \subseteq V(G)$, $N_R(U)$ is defined as $(\bigcup_{u \in U} N(u)) \cap V(R)$. Finally, $\langle V_1 \rangle_G$ stands for the subgraph of G whose vertex set is $V_1 \subseteq V(G)$ and whose edge set is the set of those edges of G that have both ends in V_1 and is called the subgraph of G induced by V_1 .

§2. Proof of Theorem A

We prove our result using the contradiction. Suppose that G is a graph of order 33 which contains neither C_4 nor a 9-element independent set. Then we have the following:

1. $\delta(G) \geq 7$. Assume that u is a vertex with $d(u) \leq 6$. Then $|V(G) - N[u]| \geq 33 - 7 = 26$. But $r(C_4, K_8) = 26$. Hence, G - N[u] contains an 8-element independent set. This set with u form a 9-element independent set. That is a contradiction.

2. G contains no K_3 . Suppose that G contains K_3 . Let $\{u_1, u_2, u_3\}$ be the vertex set of K_3 . Also, let $R = G - \{u_1, u_2, u_3\}$ and $U_i = N(u_i) \cap V(R)$. Then $U_i \cap U_j = \emptyset$ because otherwise G contains C_4 . Also, for each $x \in U_i$ and $y \in U_i$, we have that $xy \notin E(G)$ because otherwise G contains C_4 . Now, since $\delta(G) \ge 7$, $|U_i| \ge 5$. Since $r(P_3, K_3) = 5$, as a result either $\langle U_i \rangle_G$ contains P_3 for some i = 1, 2, 3 and so G contains C_4 or $\langle U_i \rangle_G$ does not contains P_3 for each i = 1, 2, 3 and so each of which contains a 3-element independent set, Thus, three independent set of each consists a 9-element independent set. This is a contradiction.

Now, let u be a vertex of G. Let $N(u) = \{u_1, u_2, \ldots, u_r\}$ where $r \ge 7$. Since G contains no K_3 , as a result $\langle N(u) \cup \{u\} \rangle_G$ forms a star. And so, $\{u_1, u_2, \ldots, u_r\}$ is independent. Now, let $N(u_1) = \{v_1, v_2, \ldots, v_k, u\}$ where $k \ge 6$. For the same reasons, $\langle N(u_1) \cup \{u_1\} \rangle_G$ forms a star and so $\{v_1, v_2, \ldots, v_k\}$ is independent. Since G contains no K_3 and no C_4 . Then $\{u_2, \ldots, u_r, v_1, v_2, \ldots, v_k\}$ is an independent set. That is a contradiction. The proof is complete. \Box

§3. Proof of Theorem B

We prove our result by using the contradiction. Assume that G is a graph of order 33 which

contains neither C_5 nor an 8-element independent set. By an argument similar to the one in Theorem A and by noting that $r(C_5, K_8) = 25$, we can show that $\delta(G) \ge 8$. Now, we have the following:

1. G contains K_3 . Suppose that G does not contain K_3 . Let $u \in V(G)$ and r = |N(u)|. Then the induced subgraph $\langle N(u) \rangle_G$ does not contain P_2 . Hence $\langle N(u) \rangle_G$ is a null graph with r vertices. Since $\alpha(G) \leq 7$, as a result $r \leq 7$. Therefore, $8 \leq \delta(G) \leq r \leq 7$. That is a contradiction.

2. G contains $K_4 - e$. Let $U = \{u_1, u_2, u_3\}$ be the vertex set of K_3 . Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 3$. Since $\delta(G) \ge 8$, $|U_i| \ge 6$ for all $1 \le i \le 3$. Now we have the following two cases:

Case 1: $U_i \cap U_j \neq \emptyset$ for some $1 \le i < j \le 3$, say $w \in U_i \cap U_j$. Then it is clear that G contains $K_4 - e$. In fact, the induced subgraph $\langle U \cup \{w\} \rangle_G$ contains $K_4 - e$.

Case 2: $U_i \cap U_j = \emptyset$ for each $1 \le i < j \le 3$. Then $\alpha(\langle U_i \rangle_G) \le 2$, for some $1 \le i \le 3$. To see that suppose that $\alpha(\langle U_i \rangle_G) \ge 3$ for each $1 \le i \le 3$. Since between any two vertices of U there is a path of order 3, as a result for any $x \in U_i$ and $y \in U_j$, we have $xy \notin E(G), 1 \le i < j \le 3$ because otherwise G contains C_5 . Therefore, $\alpha(\langle U_1 \cup U_2 \cup U_3 \rangle_G) \ge 3 + 3 + 3 = 9$. and so $\alpha(G) \ge 9$, which is a contradiction.

Now, since $|U_i| \ge 6$ and $\alpha(\langle U_i \rangle_G) \le 2$, for some $1 \le i \le 3$ and since $r(K_3, K_3) = 6$ as a result the induced subgraph $\langle U_i \rangle_G$ contains K_3 . And so $\langle U_i \cup \{u_i\}\rangle_G$ contains K_4 . Hence, G contains $K_4 - e$.

3. G contains K_4 . Let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of $K_4 - e$, where the induced subgraph of $\{u_1, u_2, u_3\}$ is isomorphic to K_3 . Without loss of generality we may assume that $u_1u_4, u_2u_4 \in E(G)$. We consider the case where $u_3u_4 \notin E(G)$ because otherwise the result is obtained. Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \le i \le 4$. Then as in $\mathbf{2}, |U_i| \ge 5$ for i = 1, 2 and $|U_i| \ge 6$ for i = 3, 4. To this end, we have that $U_i \cap U_j = \emptyset$ for all $1 \le i < j \le 4$ except possibly for i = 1 and j = 2 (To see that suppose that $w \in U_i \cap U_j$ for some $1 \le i < j \le 4$ with $i \ne 1$ or $j \ne 2$. Then we consider the following cases:

- (1) i = 3 and j = 4. Then $u_3wu_4u_1u_2u_3$ is a cycle of order 5, a contradiction.
- (2) i = 3 and j = 2. Then $u_3wu_2u_4u_1u_3$ is a cycle of order 5, a contradiction.

(3) i, j are not as in the above cases. Then by similar argument as in (2) G contains a C_5 . This is a contradiction.

Now, By arguing as in Case 2 of 2, $\alpha(\langle U_2 \rangle_G) \leq 1$ or $\alpha(\langle U_i \rangle_G) \leq 2$, for i = 3 or 4. And so, the induced subgraph $\langle U_i \rangle_G$ contains K_3 for some $2 \leq i \leq 4$. Thus, G contains K_4 .

To this end, let $U = \{u_1, u_2, u_3, u_4\}$ be the vertex set of K_4 . Let R = G - U and $U_i = N(u_i) \cap V(R)$ for each $1 \leq i \leq 4$. Since $\delta(G) \geq 8$, $|U_i| \geq 5$ for all $1 \leq i \leq 4$. Since there is a path of order 4 joining any two vertices of U, as a result $U_i \cap U_j = \emptyset$ for all $1 \leq i < j \leq 4$ (since otherwise, if $w \in U_i \cap U_j$ for some $1 \leq i < j \leq 4$, then the concatenation of the $u_i \cdot u_j$ path of order 4 with $u_i w u_j$ is a cycle of order 5, a contradiction). Similarly, since there is a path of order 3 joining any two vertices of U, as a result for all $1 \leq i < j \leq 4$ and for all $x \in U_i$ and $y \in U_j, xy \notin E(G)$ (otherwise, if there are $1 \leq i < j \leq 4$ such that $x \in U_i$ and $y \in U_j$, and $x \in E(G)$, then the concatenation of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i xy u_j$ is a cycle of the $u_i \cdot u_j$ path of order 3 with $u_i \cdot u_j$ path of order 3 with $u_i \cdot u_j$ and $u_j \in U_j$ and $u_j \in U_j$ and $u_j \in U_j$ a

order 5, a contradiction). Also, since there is a path of order 2 joining any two vertices of U, as a result $N_R(U_i) \cap N_R(U_j) = \emptyset$, $1 \le i < j \le 4$ (otherwise, if there are $1 \le i < j \le 4$ such that $w \in N_R(U_i) \cap N_R(U_j)$, then the concatenation of the u_i - u_j path of order 2 with $u_i x w y u_j$ where $x \in U_i$ and $y \in U_j$, and $xw, yw \in E(G)$ is a cycle of order 5, a contradiction). Therefore, $|U_i \cup N_R(U_i) \cup \{u_i\}| \ge \delta(G) + 1$. Thus, $|V(G)| \ge 4(\delta(G) + 1) \ge 4(8 + 1) = 4.9 = 36$. That contradicts the fact that the order of G is 33.

References

- [1] A. Baniabedalruhman and M.M.M. Jaradat, The cycle-complete graph Ramsey number $r(C_7, K_7)$. Journal of combinatorics, information & system sciences (Accepted).
- [2] B. Bollobás, C. J. Jayawardene, Z. K. Min, C. C. Rousseau, H. Y. Ru, and J. Yang, On a conjecture involving cycle-complete graph Ramsey numbers, *Australas. J. Combin.*, 22 (2000), 63-72.
- [3] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial Theory, Series B, 14 (1973), 46-54.
- [4] T.C. E. Cheng, Y. Chen, Y. Zhang and C.T. Ng, The Ramsey numbers for a cycle of length six or seven versus a clique of order seven, *Discrete Mathematics*, 307 (2007), 1047-1053.
- [5] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory, 2 (1978), 53-64.
- [6] R.J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, *Discrete Mathe*matics, 8 (1974), 313-329.
- [7] M.M.M. Jaradat and B. Alzaliq, The cycle-complete graph Ramsey number $r(C_8, K_8)$. SUT Journal of Mathematics 43 (2007), 85-98.
- [8] M.M.M. Jaradat and A.M.M. Baniabedalruhman, The cycle-complete graph Ramsey number $r(C_8, K_7)$. International Journal of pure and applied mathematics, 41 (2007), 667-677.
- [9] C.J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five versus a complete graph of order six, J. Graph Theory, 35 (2000), 99-108.
- [10] V. Nikiforov, The cycle-complete graph Ramsey numbers, Combin. Probab. Comput. 14 (2005), no. 3, 349–370.
- [11] S. P. Radziszowski and K.-K. Tse, A computational approach for the Ramsey numbers $r(C_4, K_n)$, J. Comb. Math. Comb. Comput., 42 (2002), 195-207.
- [12] I. Schiermeyer, All cycle-complete graph Ramsey numbers $r(C_n, K_6)$, J. Graph Theory, 44 (2003), 251-260.
- [13] I. Schiermeyer, The cycle-complete graph Ramsey number $r(C_5, K_7)$, Discussiones Mathematicae Graph Theory 25 (2005) 129-139.
- [14] Y.J. Sheng, H. Y. Ru and Z. K. Min, The value of the Ramsey number $r(C_n, K_4)$ is 3(n-1)+1 $(n \ge 4)$, Australas. J. Combin., 20 (1999), 205-206.