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Abstract—We formulate and solve the component search
problem under two different hypotheses: the exclusive
hypothesis in which there is one and only one abnormal
component, and the independent hypothesis in which there
can be any number of abnormal components, but the
abnormality is independently associated with the com-
ponents. Under the exclusive hypothesis, we show that
the optimal solution is given by a series of independent
sequential probability ratio tests. Under the independent
hypothesis, the threshold structure of the optimal decision
rules is established.

I. INTRODUCTION

We consider quickest localization of anomaly in a
cyber system under noisy measurements. Consider that
an intrusion to a subnet has been detected. The objective
here is to locate the infected component(s) in the subnet
as quickly and as reliably as possible. For example, a
path may be detected as being in an abnormal state, the
next step is to locate which links or routers in this path
have been compromised. Under resource constraints,
only a subset of components can be tested at each
time, and the anomaly manifests itself not determinis-
tically but rather through a different distribution of the
measurements (for example, the delay over an infected
link/router may exhibit a different distribution from that
of a healthy one). As a consequence, reliable detection
of the state of a component requires an accumulation
of measurements to reveal the underlying distribution.
The tradeoff here is thus between detection delay and
detection accuracy: the state of a component can be
more reliably detected by taking more measurements,
but at the price of increasing the delay of localizing
all infected components. The resource constraint adds
another dimension to the problem: when to stop testing
the current component and switch to a new set of
components to locate the anomaly.

The following search problem is considered: K pos-
sible search components are given to be searched. With
each component k ∈ {1, 2, . . . ,K}, we associate a hy-
pothesis H(k) claiming that the component k is abnormal
(or physically it contains an object of interest). The
hypothesis H(k) is assumed to take one of two values:

0 or 1. H(k) = 0 corresponds to the event that H(k) is
false, and H(k) = 1 corresponds to the event that H(k)

is true.
In general, we can make simultaneous observations on

M ≤ K components. The focus in this paper is on the
single observation case (i.e., when M=1). When the kth

component is observed at a stage j and an action is taken,
a measurement value y(k)j is generated independently at
the corresponding stage as a random variable with the
following probability density:

(pdf)

{
f0(y

(k)
j ), if H(k) = 0;

f1(y
(k)
j ), if H(k) = 1.

Our goal is to determine the status of all components
when we terminate the sensing by indicating whether
each component is healthy or abnormal. This determina-
tion needs to be made by making one of the following
two possible assumptions [2]:

Assumption 1 (The independent hypothesis): The
events that the hypothesis are true are independent
across hypothesis.

Assumption 2 (The exclusive hypothesis): One and
only one hypothesis can be true.

We devote §2 to solve the problem under Assumption
1. By using tools from the optimal stopping theory, we
minimize the average delay of termination time subject
to the constraint that the error probabilities are less than
preset thresholds. Our procedure in §2 closely follows
that of Caromi, et al. [1, Subsection III(B)] for solving
the non delay-limited scenario for multiband cognitive
radio systems. §3 is devoted to study the problem under
Assumption 2, and the basic structure of the optimal
policy are established for the cases when we have two
and three components.

II. THE COMPONENT SEARCH PROBLEM FOR

INDEPENDENT HYPOTHESIS

In this section we solve our problem for independent
hypothesis. We start by defining the following decision
rules:
• τ , the termination rule that we use to decide

whether or not to terminate the sensing,
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• φj , the component selection rule that we use to
select another component to make another obser-
vation if we decide to continue sensing at a stage
j,

• δj = (δ
(1)
j , δ

(2)
j , . . . , δ

(K)
j ) , the terminal decision

rule that we use to determine the status of all
components if we decide to terminate at a stage j,
in such a way that each δ(k)j takes values in {0, 1}
with 0 indicating that component k is healthy and
1 indicating that component k is abnormal.

We also define δ , {δj}∞j=1 to be the sequence of
decision rules used, and φ , {φj}∞j=1 to be the sequence
component selection functions. When we terminate the
sensing, we have the following two error probabilities
for component k: the false-alarm probability P

(k)
FA ,

Pr[δ(k)τ = 1|H(k) = 0], and the missdetection probability
P

(k)
MD , Pr[δ(k)τ = 0|H(k) = 1].
Our objective is to minimize the average delay E[τ ]

subject to the constraint that the error probabilities over
component k are less than preset thresholds, say α(k)

and β(k) for k = 1, 2, . . . ,K. More specifically, we are
interested in the problem

infτ,δ,φ E[τ ]
s.t. P

(k)
FA ≤ α(k), k = 1, 2, . . . ,K,

P
(k)
MD ≤ β(k), k = 1, 2, . . . ,K.

(1)

By following the same argument as in [6, §4.3], the
solution of (1) can be obtained once we can find the
solution of the problem

infτ,δ,φ

[
E[τ ] +

K∑
k=1

(
c0(1− π(k)

0 )P
(k)
FA + c1π

(k)
0 P

(k)
MD

)]
,

(2)
where π(k)0 , Pr[H(k) = 1] is the priori probability that

component k is abnormal, E is the expectation under
the probability measure

(
(1−π(1)0 )f0+π

(1)
0 f1, . . . , (1−

π
(K)
0 )f0+π

(K)
0 f1

)
, c0 is the cost of a false-alarm event

happening over each component, and c1 is the cost of a
missdetection event happening over each component.

We now define πj , (π
(1)
j , π

(2)
j , . . . , π

(K)
j ), where

π
(k)
j is the posterior probability that component k is

abnormal after collecting observations up to stage j.
Under the independent hypothesis, if we select com-

ponent k to sense at stage j (i.e., φj = k), then from
Bayes’ rule, the posterior probability of component k
being abnormal after collecting an observation y(k)j can
be updated as follows:

π
(k)
j =

π
(k)
j−1f1(y

(k)
j )

π
(k)
j−1f1(y

(k)
j ) + (1− π(k)j−1)f0(y

(k)
j )

. (3)

It is also clear π(k)j = π
(k)
j−1 for component k that is

not selected at stage j. Now we will show that πj is a
sufficient statistic, that is, at stage j, we can make our
decision rules τ , δ, and φ solely based on πj .

For any given termination rule τ and component
selection rules φ, by following argument as in [5], one
can show the optimality of the following simple terminal
decision rule:

δ(k)τ =

{
1, if c1π

(k)
τ ≥ c0(1− π(k)τ );

0, if c1π
(k)
τ < c0(1− π(k)τ ).

That is, we declare that component k is abnormal if the
cost of a missdetection event is larger than that of a
false alarm and vice visa. This shows that the terminal
decision rules δ can be made only based on πj , and
therefore Problem (2) can be converted into the problem

infτ,φ E

[
τ +

K∑
k=1

min
{
c0(1− π(k)τ ), c1π

(k)
τ

}]
.

(4)
We will now take the advantage of the theory of

optimal stopping rules [4] to solve the resulting problem.
For any stopping time τ , let τ (k) be the amount of time
we spend on detecting component k. So, Problem (4)
can be reformulated as the problem

inf{τ(k)}K
k=1

E

[
K∑
k=1

τ (k) +

K∑
k=1

min
{
c0(1− π(k)

τ(k)), c1π
(k)

τ(k)

}]
,

or equivalently,

inf{τ(k)}K
k=1

K∑
k=1

E
[
τ (k) +min

{
c0(1− π(k)

τ(k)), c1π
(k)

τ(k)

}]
.

(5)

It is immediately follows that the objective function in
(5) is regardless of sensing ordering φ, and, in particular,
it is related to only the total amount of detection time.
That is, once the quantity

E
[
τ (k) +min

{
c0(1− π(k)τ (k)), c1π

(k)
τ (k)

}]
(6)

is minimized for each component k = 1, 2, . . . ,K,
the sum is also minimized. The key observation about
this situation is that these K optimization problems are
independent of each other, and, as a result, we can
independently minimize each term of the sum.

For each k, the procedure that minimizes (6) is the
well-known SPRT algorithm [4]. More explicitly, this
solution procedure is parametrized by two parameters
U (k) and L(k) and is performed as follows: after taking
each sample from component k we update the posterior
probability π(k)j , then, as a rule, we stay on component

k and take more samples if π(k)j ∈ (L(k), U (k)), we stop
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sampling on component k, and claim that component k
is abnormal if π(k)j ≥ U (k), and we stop sampling on
component k, and claim that component k is healthy if
π
(k)
j ≤ L(k). In fact, as Problem (6) does not depend

on the component selection rules φ, we can start
sensing from component 1, and then we switch to
component 2 once we finish sensing component 1, etc.
We terminate the whole sensing process once we finish
sensing component K. The complete search procedure
is summarized in Algorithm 1.

Algorithm 1: THE SPRT ALGORITHM FOR SOLVING

THE COMPONENT SEARCH PROBLEM (5)
Require: f0, f1, c0, c1, and π0

for k = 1, 2, . . . ,K do
compute parameters L(k) and U (k),
take each sample from comp. k and update the
posterior probability π(k)j using (3)

while π(k)j ∈ (L(k), U (k)) do
take more samples from component k and
update the posterior probability π(k)j using (3)

end while
if π(k)j ≥ U (k) then

claim that component k is abnormal
end if
if π(k)j ≤ L(k) then

claim that component k is healthy
end if

end for

III. THE COMPONENT SEARCH PROBLEM FOR

EXCLUSIVE HYPOTHESIS

In this section we give basic structure of the optimal
policy of our problem for exclusive hypothesis. Under
the exclusive hypothesis, if we select component k to
sense at stage j (i.e., φj = k), then from Bayes’ rule,
the posterior probability of component k being abnormal
after collecting an observation y

(k)
j can be updated as

follows:

T (π(k)
j−1|y

(k)
j ) , π(k)

j =
π
(k)
j−1f

(k)
1 (y

(k)
j )

π
(k)
j−1f

(k)
1 (y

(k)
j ) + (1− π(k)

j−1)f
(k)
0 (y

(k)
j )

.

For component k that is not selected at time j, the
posterior probability π

(k)
j is also updated. In fact, if

we select component l 6= k, then the measurement y(l)j
affects the posterior probability π(k)j−1 using the following
equation

T (π(k)
j−1|y

(l)
j ) , π(k)

j =
π
(k)
j−1f

(k)
0 (y

(l)
j )

π
(l)
j−1f

(l)
1 (y

(l)
j ) + (1− π(l)

j−1)f
(l)
0 (y

(l)
j )

.

We define πj , (π
(1)
j , π

(2)
j , . . . , π

(K)
j ). Note that

under Assumption 2 we have that
∑K

k=1 π
(k)
j = 1.

Let V (πj) denote the minimal expected total remaining
cost when the current information state is πj . Note that
V (πj) specifies the performance of the optimal policy
starting from the information state πj . Let VCk

(πj)
denote the minimal expected total remaining cost when
we take action Ck at time j and follow the optimal
policy. Let VSk

(πj) be similarly defined. We thus have

V (π̄j) = min{VCk
(π̄j), VSk

(π̄j) : k = 1, 2, . . . ,K}.

In general, want to choose an action from the follow-
ing set

{C1, C2, . . . , CK , S1, S2, . . . , SK},

where Ck means that we continue taking samples from
component k, and Sk means that we stop taking any
more samples and declare that the kth component is
abnormal. In the following two subsections we consider
the cases of K = 2 and K = 3. Extensions to an
arbitrary K > 3 is straightforward.

A. The case K=2

Let us consider the case when K = 2. In this case we
choose an action from the set {C1, C2, S1, S2}, and we
have π(1)j + π

(2)
j = 1.

We first make the following additional assumption
concerning the probability densities f0 and f1.

Assumption 3: There exists a constant a ∈ IR such
that f0(x) = f1(a− x).
Observe that when the distributions are symmetric about
constant means (such as Gaussian distributions), As-
sumption 3 is satisfied.

Note that in this case we have

VS1
(π

(1)
j ) = (c0 + c1)(1− π(1)j ),

VS2
(π

(1)
j ) = (c0 + c1)π

(1)
j .

(7)

We then have the following lemma.
Lemma 1: VS1

(π
(1)
j ) is a linearly decreasing function

of π(1)j , and VS2
(π

(1)
j ) is a linearly increasing function

of π(1)j .
Proof. Obvious from (7). �

Note also that

VC1(π
(1)
j ) = 1+

∫
y

[π
(1)
j f1(y) + (1− π(1)

j )f0(y)]V (T1(π(1)
j |y))dy,

(8)
where

T1(π(1)j |y) =
π
(1)
j f1(y)

π
(1)
j f1(y) + (1− π(1)j )f0(y)

,
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and that

VC2(π
(1)
j ) = 1+

∫
y

[(1− π(1)
j )f1(y) + π

(1)
j f0(y)]V (T2(π(1)

j |y))dy,

(9)
where

T2(π(1)j |y) =
π
(1)
j f0(y)

(1− π(1)j )f1(y) + π
(1)
j f0(y)

.

We also have the following lemma.

Lemma 2: VC1
(π

(1)
j ) and VC2

(π
(1)
j ) are concave and

identical to each other.
Proof. We proof the lemma by considering the finite
horizon problem of length T , i.e., we need to declare
within K units of time. Let V T (·), V T

C1
(·) and V T

C2
(·)

denote the corresponding value functions. We have that

V 0(πj) = min{VS1
(π

(1)
j ), VS2

(π
(1)
j )},

and

V T (πj) = min{V TC1
(π

(1)
j ), V TC2

(π
(1)
j ), VS1

(π
(1)
j ), VS2

(π
(1)
j )},

for T > 0.
We prove that V T

C1
(π

(1)
j ) is concave and that it is equal

to V T
C2
(π

(1)
j ) by induction. For the initial condition, we

have

V 1
C1

(π
(1)
j ) = 1 +

∫
y

[π
(1)
j f1(y) + (1− π(1)

j )f0(y)]

V 0(T1(π(1)
j |y))dy

= 1 +

∫
y

[π
(1)
j f1(y) + (1− π(1)

j )f0(y)]

min{VS1(T1(π
(1)
j |y)), VS2(T1(π

(1)
j |y))}dy

= 1 + (c0 + c1)

∫
y

[π
(1)
j f1(y) + (1− π(1)

j )

f0(y)]min{(1− T1(π(1)
j |y)), T1(π

(1)
j |y)}dy

= 1 + (c0 + c1)∫
y

min{(1− π(1)
j )f0(y), π

(1)
j f1(y)}dy.

(10)
Thus, for any given y, the integrand (10) is the min-

imum of two linear functions of π(1)j . The concavity

of V 1
C1
(π

(1)
j ) thus follows. As a consequence, V 1(π

(1)
j )

is the minimum of six linear functions. It is thus also

concave. In addition, using Assumption 3, we also obtain

V 1
C2

(π
(1)
j ) = 1 +

∫
y

[(1− π(1)
j )f1(y) + π

(1)
j f0(y)]

V 0(T2(π(1)
j |y))dy

= 1 +

∫
y

[(1− π(1)
j )f1(y) + π

(1)
j f0(y)]

min{VS1(T2(π
(1)
j |y)), VS2(T2(π

(1)
j |y))}dy

= 1 + (c0 + c1)

∫
y

[(1− π(1)
j )f1(y) + π

(1)
j

f0(y)]min{(1− T2(π(1)
j |y)), T2(π

(1)
j |y)}dy

= 1 + (c0 + c1)

∫
y

min{(1− π(1)
j )f1(y),

π
(1)
j f0(y)}dy

= 1 + (c0 + c1)

∫
y

min{(1− π(1)
j )f1(a− y),

π
(1)
j f0(a− y)}dy

= 1 + (c0 + c1)

∫
y

min{(1− π(1)
j )f0(y),

π
(1)
j f1(y)}dy

= V 1
C1

(π
(1)
j ).

Now assume that V T
C1
(π

(1)
j ) = V T

C2
(π

(1)
j ) and

V T (π
(1)
j ) are concave. Then V T (π

(1)
j ) can be written as

the minimum of finitely many (potentially uncountable)
linear functions of π(1)j . Let us, by abuse of notation,
index these linear functions by i ∈ IR, i.e., there exist
ai, bi ∈ IR such that

V T (π
(1)
j ) = min

i∈IR
{ai + biπ

(1)
j }.

We thus have

V T+1
C1

(π
(1)
j ) = 1 +

∫
y
[π

(1)
j f1(y) + (1− π(1)j )f0(y)]

V T (T1(π(1)j |y))dy

= 1 +

∫
y
[π

(1)
j f1(y) + (1− π(1)j )f0(y)]

mini∈IR{ai + biT1(π(1)j |y)}dy

= 1 +

∫
y
min
i∈IR
{ai[π(1)j f1(y) + (1− π(1)j )

f0(y)] + biπ
(1)
j f1(y)}dy

= 1 +

∫
y
min
i∈IR
{[aif0(y)] + [(ai + bi)

f1(y)− aif0(y)]π(1)j }dy.
(11)

We can see that for any given y, the integrand in (11) is
the minimum of linear functions of π(1)j , thus concave in

π
(1)
j . It follows that V T+1

C1
(π

(1)
j ) is concave. In addition,

using Assumption 3, we also obtain
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V T+1
C2

(π
(1)
j ) = 1 +

∫
y
[(1− π(1)j )f1(y) + π

(1)
j f0(y)]

V T (T2(π(1)j |y))dy

= 1 +

∫
y
[(1− π(1)j )f1(y) + π

(1)
j f0(y)]

mini∈IR{ai + biT2(π(1)j |y)}dy

= 1 +

∫
y
min
i∈IR
{ai[(1− π(1)j )f1(y)

+ π
(1)
j f0(y)] + biπ

(1)
j f0(y)}dy

= 1 +

∫
y
min
i∈IR
{ai[(1− π(1)j )f1(a− y)+

π
(1)
j f0(a− y)] + biπ

(1)
j f0(a− y)}dy

= 1 +

∫
y
min
i∈IR
{ai[(1− π(1)j )f0(y)

+ π
(1)
j f1(y)] + biπ

(1)
j f1(y)}dy

= 1 +

∫
y
[π

(1)
j f1(y) + (1− π(1)j )f0(y)]

V T (T1(π(1)j |y))dy
= V T+1

C1
(π

(1)
j ).

The proof is complete. �

One can easily obtain from (7), (8) and (9) the
following observations:

• VS1
(1) = VS1

(0) = 0, and VS1
(π

(1)
j ) = VS2

(π
(1)
j ) if

and only if π(1)j = 1/2.
• VCk

(0) = VCk
(1) = 1 for k = 1, 2.

Based on the above observations and Lemmas 1 and
2, we obtain the following basic structure of the optimal
policy.

Theorem 1: The quickest detection of the two com-
ponent search problem for exclusive hypothesis is given
by two thresholds η ∈ (0, 1/2] and 1 − η: stop taking
samples and declare that the 2nd component is abnormal
if π(1)j < η, continue taking samples on either the 1st or

the 2nd component if η ≤ π(1)j ≤ 1− η, and stop taking
samples and declare that the 1st component is abnormal
if π(1)j > 1−η. That is, the optimal action a(π(1)j ) under

the belief value π(1)j is in the following form:

a(π
(1)
j ) =


S2, if π(1)j < η;

C1 or C2, if η ≤ π(1)j ≤ 1− η;
S1, if π(1)j > 1− η.

Fig. 1 illustrates the basic structure of the optimal
policy given in Theorem 1.

Fig. 1. The structure of the optimal policy under the exclusive model
(K = 2).

B. The case K=3

Let us consider the case when K = 3. In this case we
choose an action from the set {C1, C2, C3, S1, S2, S3},
and we have that π(1)j + π

(2)
j + π

(3)
j = 1. Note that

VS1
(π

(1)
j , π

(2)
j ) = (c0 + c1)(1− π(1)j ),

VS2
(π

(1)
j , π

(2)
j ) = (c0 + c1)(1− π(2)j ),

VS3
(π

(1)
j , π

(2)
j ) = (c0 + c1)(π

(1)
j + π

(2)
j ).

(12)

We have the following lemma.
Lemma 3: VS1

(π
(1)
j , π

(2)
j ) and VS2

(π
(1)
j , π

(2)
j ) are

linearly decreasing functions of (π
(1)
j , π

(1)
j ), and

VS3
(π

(1)
j , π

(2)
j ) is a linearly increasing function of

(π
(1)
j , π

(2)
j ).

Proof. Obvious from (12). �

Note also that

VC1
(π

(1)
j , π

(2)
j ) = 1 +

∫
y
[π

(1)
j f1(y) + (1− π(1)

j )f0(y)]

V (T1(π(1)
j |y), T1(π

(2)
j |y))dy,

(13)
where

T1(π(1)j |y) =
π
(1)
j f1(y)

π
(1)
j f1(y) + (1− π(1)j )f0(y)

and

T1(π(2)j |y) =
π
(2)
j f0(y)

π
(1)
j f1(y) + (1− π(1)j )f0(y)

;
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VC2(π
(1)
j , π

(2)
j ) = 1 +

∫
y
[π

(2)
j f1(y) + (1− π(2)

j )f0(y)]

V (T2(π(1)
j |y), T2(π

(2)
j |y))dy,

(14)
where

T2(π(1)j |y) =
π
(1)
j f0(y)

π
(2)
j f1(y) + (1− π(2)j )f0(y)

and

T2(π(2)j |y) =
π
(2)
j f1(y)

π
(2)
j f1(y) + (1− π(2)j )f0(y)

;

and that

VC3
(π

(1)
j , π

(2)
j ) = 1 +

∫
y
[(1− π(1)

j − π
(2)
j )f1(y)

+(π
(1)
j + π

(2)
j )f0(y)]V (T3(π(1)

j |y),
T3(π(2)

j |y))dy,
(15)

where

T3(π(1)
j |y) =

π
(1)
j f0(y)

(1− π(1)
j − π

(2)
j )f1(y) + (π

(1)
j + π

(2)
j )f0(y)

and

T3(π(2)
j |y) =

π
(2)
j f0(y)

(1− π(1)
j − π

(2)
j )f1(y) + (π

(1)
j + π

(2)
j )f0(y)

.

We also have the following lemma.
Lemma 4: VCk

(π
(1)
j , π

(2)
j ) is concave for k = 1, 2, 3.

Proof. The proof is a trivial extension of the proof of
Lemma 2 and therefore omitted. �

From (12), (13), (14) and (15), one can easily obtain
the following observations:
• VS1

(1, 0) = VS2
(0, 1) = VS3

(0, 0) = 0, and
VS1

(π
(1)
j , π

(2)
j ) = VS2

(π
(1)
j , π

(2)
j ) = VS3

(π
(1)
j , π

(2)
j )

if and only if (π(1)j , π
(2)
j ) = (1/3, 1/3).

• The functions VS1
(·) and VS2

(·) are symmetric with
respect to the plane π(1)j = π

(2)
j . That is,

VS1
(π

(1)
j , π

(2)
j ) = VS2

(π
(2)
j , π

(1)
j ).

• The functions VS1
(·) and VS3

(·) are symmetric with
respect to the plane 2π

(1)
j + π

(2)
j = 1. That is,

VS3
(π

(1)
j , π

(2)
j ) = VS1

(1− π(1)j − π
(2)
j , π

(2)
j ).

• The functions VS2
(·) and VS3

(·) are symmetric with
respect to the plane π(1)j + 2π

(2)
j = 1. That is,

VS3
(π

(1)
j , π

(2)
j ) = VS2

(π
(1)
j , 1− π(1)j − π

(2)
j ).

• VCk
(0, 0) = VCk

(0, 1) = VCk
(1, 0) = 1 for all

k = 1, 2, 3, and VC1
(π

(1)
j , π

(2)
j ) = VC2

(π
(1)
j , π

(2)
j ) =

VC3
(π

(1)
j , π

(2)
j ) if and only if (π

(1)
j , π

(2)
j ) =

(1/3, 1/3).
• The functions VC1

(·) and VC2
(·) are symmetric with

respect to the plane π(1)j = π
(2)
j . That is,

VC1
(π

(1)
j , π

(2)
j ) = VC2

(π
(2)
j , π

(1)
j ).

• The functions VC1
(·) and VC3

(·) are symmetric with
respect to the plane 2π

(1)
j + π

(2)
j = 1. That is,

VC3
(π

(1)
j , π

(2)
j ) = VC1

(1− π(1)j − π
(2)
j , π

(2)
j ).

• The functions VC2
(·) and VC3

(·) are symmetric with
respect to the plane π(1)j + 2π

(2)
j = 1. That is,

VC3
(π

(1)
j , π

(2)
j ) = VC2

(π
(1)
j , 1− π(1)j − π

(2)
j ).

Based on the above observations and Lemmas 3 and
4, we can easily obtain the following basic structure of
the optimal policy.

Theorem 2: The quickest detection of the three com-
ponent search problem for exclusive hypothesis is given
by the following four rules: stop taking samples and
declare that the 1st component is abnormal if π(1)j +

2π
(2)
j ≤ 1, 2π

(1)
j + π

(2)
j ≤ 1, and π

(1)
j ≥ η(π

(2)
j ), stop

taking samples and declare that the 2nd component is
abnormal if π(1)j + 2π

(2)
j > 1, π

(1)
j ≤ π

(2)
j , and π

(2)
j ≥

η(π
(1)
j ), stop taking samples and declare that the 3rd

component is abnormal if 2π
(1)
j + π

(2)
j > 1, π

(1)
j >

π
(2)
j , and π

(1)
j , π

(2)
j ≤ η(1 − π

(1)
j − π

(2)
j ), and

continue taking samples on either the 1st, the 2nd or
the 3rd component if otherwise. That is, the optimal
action a(π

(1)
j , π

(2)
j ) under the belief vector (π

(1)
j , π

(2)
j )

is given in (16), where η(πj) : [0, 1] −→ [0, 1] is the
detection threshold which is concave in πj . Furthermore,
the action a(π(1)j , π

(2)
j ) is symmetric with respect to the

lines π(1)j = π
(2)
j , π

(1)
j +2π

(2)
j = 1, and 2π

(1)
j +π

(2)
j = 1,

as follows:

a(π
(1)
j , π

(2)
j ) = C1 ⇐⇒ a(π

(2)
j , π

(1)
j ) = C2,

a(π
(1)
j , π

(2)
j ) = C3 ⇐⇒ a(1− π(1)

j − π
(2)
j , π

(1)
j ) = C1,

a(π
(1)
j , π

(2)
j ) = C3 ⇐⇒ a(π

(1)
j , 1− π(1)

j − π
(2)
j ) = C2.

Fig. 2 illustrates the basic structure of the optimal
policy given in Theorem 2.

IV. CONCLUSION

In this paper, we have formulated and solved the com-
ponent search problem under two different assumptions:
When there is one and only one abnormal component
(the exclusive hypothesis), and when there can be any
number of abnormal components, but the abnormality
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a(π
(1)
j , π

(2)
j ) =


S1, if π(1)j + 2π

(2)
j ≤ 1, 2π

(1)
j + π

(2)
j ≤ 1, and π

(1)
j ≥ η(π

(2)
j );

S2, if π(1)j + 2π
(2)
j > 1, π

(1)
j ≤ π

(2)
j , and π

(2)
j ≥ η(π

(1)
j );

S3, if 2π
(1)
j + π

(2)
j > 1, π

(1)
j > π

(2)
j , and π

(1)
j , π

(2)
j ≤ η(1− π

(1)
j − π

(2)
j );

C1, C2, or C3, otherwise.

(16)

Fig. 2. The structure of the optimal policy under the exclusive model
(K = 3).

is independently associated with the components (the
independent hypothesis). For the exclusive hypothesis,
using tools from the optimal stopping theory, we have
developed an optimal sensing algorithm that minimizes
the average delay of termination time subject to the
constraint that the error probabilities (the false-alarm
probability and the missdetection probability) over are
less than preset thresholds. this development is analogue
to the results of Caromi, et al. [1, Subsection III(B)]
for solving the non delay-limited scenario for multiband
cognitive radio systems. For the independent hypothesis,
we established the simple threshold structure of the
optimal decision rule for the case when we have two
components and the basic structure of the optimal deci-
sion rule for the case when we have three components.
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