

Set Theory
A set is an ordered collection of distinct objects.

$$
\text { ex) } \begin{aligned}
\text { vowels } & =\{a, e, i, v, u\} \\
\text { days } & =\{1,2,3 \ldots 365\}-\text { Finite } \\
& \text { natural numbers }=\{1,2,3 \ldots\} \text { - Infinite }
\end{aligned}
$$

(1) The order is not significant
(2) No duplicates

Elements/Members
The objects of a set

- Let S be a set

NOTATION: $x \in S=x$ is an element
of s
ex) Saturday EWeekend $1 \in$ Days - True
a \in Vowels
$-4 \in$ bays -FALSE
Monday \in Weekend -FALSE

Set Equality
Let $A \& B$ be two arbitrary sets $\cup A=B$ is the when A \& B have precisely the same elements

$$
\text { ex) }\{1,2,3\}=\{3,1,2\}
$$

电 $<\pi$
The Empty Set (\varnothing or $\}$)
special set that has no elements
Subsets
$A \subseteq B$ is true when all elements of A are in B
ex) $\{1,2,3\} \subseteq$ Days
Proper Subset
$A \subset B$ is the when $A \subseteq B$ and $A \neq B$
ex) $\{1,2\} \subset\{1,2,3$
Power Set $(P(A)$)
A set of all subsets of A
ex) $p(\{1\})=\{\varnothing,\{1\}\}$

$$
\begin{gathered}
P(\{1,2\})=\{\phi,\{1\},\{2\},\{1,2\}\} \\
\dot{P}(\{1,2,3\})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,2,3\}\} \\
\{2,3\},\{1,3\}
\end{gathered}
$$

Operations on Sets
Venn Diagrams

$A \cup B$

$A \cap B$

A^{c}
(complement of A)

$A \cap B^{c}$

$$
(A \cap B)^{C}=A^{C} \cup B^{C}
$$

Demorgan's Law

$A \cap B \cap C^{C}$
(1) The union of $A \& B(A \cup B)$ contains both elements of $A \& B$ (2) The intersection of A and B $(A \cap B)$ contains only the common
elements of both $A \propto_{p}$

Cardinality of a Set

- \# of elements in a set ex) (weekend $=2$ (Saturday \& Sunday)

$$
|\{1,2,3\}|=3
$$

$$
\begin{aligned}
& A=1,2,3 \\
& B, 2,3,4 \\
& \text { union }=\{1,2,3,4\} \\
& \text { intersection }=\{2,3\}
\end{aligned}
$$

