

Modeling in Prop. Logic

- Representation of English statement using variables \& operators
ex) If today is wed, and today is not a holiday, then we have class
$P:$ "Today is Wed"
$Q:$ "Today is a holiday"
R : "We have class"
MODEL: $P \wedge \neg Q \rightarrow P$
ex) If it is raining and you do not have an umbrella then you will get wet.
CONTRAPOSITIVE:
If you did not get wet it is not raining and you have a umbrella

Using Truth Table to derive Prop. Formulas ex) $P \vee(\neg P \wedge Q) \equiv P \vee Q$ | P | $\neg P$ | Q | $(\neg P \wedge Q)$ | $P \vee(\neg P \wedge Q)$ | $P V Q$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | F | T | T |
| F | T | T | T | T | T |
| T | F | F | T | T | |
| F | T | F | F | F | F |
| | | | | | |

ex) $P \oplus(Q \wedge R) \equiv(P \oplus Q) \wedge(P \oplus R)$

Important Laws in Prop. Logic

Name	Law			
1. Identity Laws	$T \wedge P \equiv P$			
$F \vee P \equiv P$			2. Domination Laws	$T \vee P \equiv T$
:---	:---			
	$F \wedge P \equiv F$			
3. Idempotence	$P \vee P \equiv P$			
Law	$P \wedge P \equiv P$			
4. Tautology Law	$P \vee \neg P \equiv T$			
5. Contradiction Law	$P \wedge \neg P \equiv F$			
6. Implication Law	$P \rightarrow Q \equiv \neg P \vee Q$			
7. Contrapositive Law	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$			
8. DeMosgan's Laws	$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$			
9. Commutative Laws	$P \wedge Q \equiv(P \vee Q) \equiv \neg P \wedge \neg Q$			

Using Logical Operators to derive Pop. Formulas
ex)

$$
\begin{aligned}
& P \vee(\neg P \wedge Q) \equiv P \vee Q \\
& P \vee(\neg P \wedge Q) \stackrel{\text { Dist. }}{\doteq}(P \vee \neg P) \wedge(P \vee Q) \\
& \equiv \frac{\text { Taut. }}{T} \wedge(P \vee Q) \\
& \text { Identify } \\
& \equiv P \vee Q
\end{aligned}
$$

ex)

$$
\begin{aligned}
& \underset{\text { implication }}{P \wedge Q} \rightarrow P \equiv T \quad \text { (io a tautology) } \\
& \neg(P \wedge Q) \vee P \\
& \text { Demergan's } \\
& \text { (TPVIQ) Q } P \\
& (\neg Q \vee \neg P) \vee P \\
& \neg Q \vee(\neg P \vee P) \\
& \rightarrow Q \vee \frac{\text { Tautology }}{T} \\
& { }^{\text {nomination }} \equiv \text { T }
\end{aligned}
$$

Propositional Logic in CS
Java Code:

$$
\begin{aligned}
& \text { if } \frac{\left(x<0<\frac{\pi R}{P}\left(\frac{x>=0}{\neg P} \infty_{A N D}^{\infty} y==43\right)\right.}{Q} \\
& \text { In } P \vee(\neg P \wedge Q)
\end{aligned}
$$

Homework:
https://u.osu.edu/alzalg.1/files/2019/08/HW2.pdf

