$$
\text { Lecture\# } 4
$$

Why Implications are important:

- many Math theorems can be stated in IF \rightarrow THEN form

EX: Prove that the sum of two even integers
If x and y are even integers THEN $x+y$ is an even integer

PROOF: Let x \& y be even
Want: $x+y$ is even
$x=2 k_{1}$? for some
$\left.y=2 k_{2}\right\} \begin{aligned} & \text { for some } \\ & k_{1}, k_{2} \in \mathbb{Z}\end{aligned}$
$x+y=2 k_{1}+2 k_{2}$ $=2(\underbrace{}_{k_{3}}+k_{2})$

$$
=2 k_{3}
$$

RECALL:
The sum of two integers is an integer
x is odd, $x=2 k+1$
x is even $x=2 k$
for some k

Ex: Prove the sum of two odd inlegess is even

Contrapositive
$P \rightarrow Q$
Negation of
$\neg Q \rightarrow \neg P \quad \begin{aligned} & \text { conclusion leads to } \\ & \text { negation of hypothesis }\end{aligned}$
ex) $P:$ "Today is Wednesday "
Q:"We have a class Hod
Q: "We have a class today"
$P \rightarrow Q:$ If today is wed - use have a class today
$\neg P \rightarrow \neg Q:$ If we don't have a class today today is not Wednesday

Truth Table-

$$
\begin{array}{c|c|c|c|c|c|}
P & Q & P \rightarrow Q & \neg Q & \neg P & \neg Q \rightarrow P \\
T & T & T & F & E & T \\
F & T & T & F & T & T \\
T & F & F & T & F & F \\
F & F & T & T & T & T
\end{array}
$$

FACT: $P \rightarrow \mathbb{Q} \equiv \neg Q \rightarrow \neg P$
(logically equivalent)
Contrapositive -once a theorem is proven, there is no need to prove its contrapositive

Ex: Pythagorean theorem says IF a triangle has a right angle
 THEN $a^{2}+b^{2}=c^{2}$
Contrapositive: If $a^{2}+b^{2} \neq c^{2}$, rights the triangle does not have a

* Sometimes it's easier to prove the contrapositive of a theorem.
Ex Let x be an integer prove that if x^{2} is even then x is even
prove contrapositive: If x is odd then x^{2} is odd

$$
\begin{gathered}
x \text { is odd, so } x=2 k+1 \\
x^{2}=(2 k+1)^{2} \\
(2 k+1)(2 k+1) \\
4 k^{2}+2 k+2 k+1 \\
4 k^{2}+4 k+1 \\
2\left(2 k^{2}+2 k\right)+1 \\
2 * 80 \text { mething }+1 \\
\text { ODD }
\end{gathered}
$$

Converse

$$
\begin{aligned}
& P \rightarrow Q \\
& Q \rightarrow P
\end{aligned}
$$

ex) P : "Today is Wednesday" $\times \times \times$
Q: "We have a class today"
Q $\rightarrow P$ If we have a class today
Inverse

$$
P \rightarrow Q
$$

$\neg P \rightarrow \neg Q$
ex) P :"Today is Wednesday"
Q: "We have a class today"
$\neg P \rightarrow \neg Q$ If today is not wednesday THEN we dort have a class to day
Truth Table -

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$\neg P$	$\neg Q$	$\neg P \rightarrow \neg Q$
T	T	T	T	F	F	T
F	T	T	F	T	F	F
F	F	F	T	F	T	T
F	F	T	T	T	T	T

$$
Q \rightarrow P \equiv \neg P \rightarrow \neg Q
$$

$\neg P \rightarrow \neg Q$ is the contrapositive of $P \rightarrow Q$

Biconditional - If And only IF
$P \longleftrightarrow Q \quad$ goes both ways

\[

\]

