
 

Lecture 36
TOPOLOGICAL SORTING

4 topological ashes of a directed

graph G CV E is an ordering
of its vertices as Vi V2 sun so
that for everyedge Cvi Vjs we have
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In a task scheduling diagraph a topological
sorting of a task sequence satisfies the
precedence constraints

scheduling problem i

Edge Aib means task a must be
completed before task b can be started

course prerequisite graple
course Vi must be taken before

course Vjpipeline of computing jobs output
of job Vi needed to determine input

of job Vj



If a directed graph has a directed cycle
you can't have a topological ordes

it directedacyclicgsapleCDAGis a digraph w no directed
cycles
Thin A diagraph has a topological
order IFF it is a DAG
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Computing atop Orderingsfrom a DAG
Find a vertex w no incoming edgesand order it first
delete it from G
Recursively compute a topological
ordering of G Ev and append
this as des after v



Draw the topological ordering fees
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