

BES Intuition - Explore outward from source vertex (s) of a graph $G=(r, E)$ in all possible directions, adding vertices one "ayes" os "level" at a time

BFS is used fer both directed \& undirected graphs

BES Algorithm Outline

* $L_{0}=\{s\}$
* $L_{1}=$ all neighbors of L_{0}
* $L_{2}=$ all vertices that do not belong to ho os $L_{1 \alpha}$ and that have an edge to a vertex in L_{1}
* L_{i+1} = all verticies that do not belong to an earlier layes, and that have an edge to a vertex in L_{i}
Note:

Ex. Use BFS to determine the smallest \# of layers or hops b/w the vertices starting from vertex s

Undirected

(B) Directed graph

Strongly connected
(c) Undirected Graph

Handout \#5

$$
\begin{aligned}
& \text { frontier }_{0}=\{s\} \\
& \text { frontier }_{1}=\{a, x\} \\
& \text { frontier }_{2}=\{z, d, c\} \\
& \text { frontier }_{3}=\{f, v\}
\end{aligned}
$$

thru. The above implementation of BFS runs in $O(|V|+|E|)$ time if the graph or $O(V+E)$ is given by its adjacency representation

Ex. Fer the following graph, draw a BFS thee using al phabetical ordering (starting at a). Then list the edges in the order selected.

Edge List: $(a, b),(a, e)(a, g)$
(b, d)
(d, c)
(c, f)

An application: Shortest Path
Problem: Liven 2 verticies of A, find a path in $\&$ bow them w) the minimum \# of edges, os report that no such path exists

FACT: There is a path from s to t FF + appears in some lays while performing BFS.
Idea: we perform BFS starting at vertex s, then $<S, \ldots$, parent [parent $[v]]$, parent $+[v], v>$ is a shortest path from s to v The length of this path is level $[v]$
 Homework:
https://u.osu.edu/alzalg.1/files/2019/11/hw14.pdf

