

Directed Graplas
Path (in a digraph)
a sequence of distinct verticies such that there exists a directed edge from each vertex to the next vertex on the page
(a) \longrightarrow (b)
(a) \rightarrow (b) (c)

Weakly Connected - replacing all directed $w /$ undirected edges produces a connected (undirected) graph

weakly connected

This undirected graph

Strongly Connected - every 2 verticies are reachable from eachothes

you can go from u to y, y to u, v to $x \ldots$
There is a direct path from every vertex to another
(ALSO weakly connected)

* The whole graph should only have 1

Strongly Connected Components (S.C.C) G ' of a digraph G is a maximal strongly connected subgraple of G.
Ex.

Example (hike Q\#2 HW\#/H)

5 strongly connected components

Graph Representation
Motivation - present algorithms for searching \& exploring a graph

2 Standard Ways to Represent Graphs
(1) Adjacency List Representation
of $G=(V, E)$

$$
\text { of } G=(V, E)
$$

- An array of $\mid V /$ lists - one list fer each vertex in V - Each list Adj[u] contains all the verticies v that are adjacent to u.

$$
\operatorname{Adj}[\mu]=\{v \in \sqrt{v}:(\mu, v) \in E\}
$$

Ex. Use adjacency lists to rep. The graphs Directed

$\operatorname{Adj}[1]=\{3\}$
$\operatorname{Adj}[2]=\{1,3\}$

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,5\} \\
& \operatorname{Adj}[2]=\{1,5,41,3\} \\
& \operatorname{Adj}[3]=\{2,4\} \\
& \operatorname{Adj}[4]=\{2,5,3\} \\
& \operatorname{Adj}[5]=\{4,1,2\}
\end{aligned}
$$

Q \#3, How \#14

Adj

(2) Adjacency Matrix Representation

Idea: Assume vesticies are numbers

$$
1,2,3, \ldots,|r|
$$

- representation consists of a matrix

$$
\begin{aligned}
& A|r| x|v| ; \\
& a_{i y j}= \begin{cases}1 & \text { if }(i, j) \in E \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Undirected

1	2	3	4	5		$A=A^{\top}$
1	0	1	0	0	1	symmetric
2	1	0	1	1	1	
3	0	1	0	1	0	
4	0	1	1	0	1	
5	1	1	0	1	0	

Directed

Def $l e t ~ G=(v, E)$ bs
Q $1 / \mathrm{f}|E|$ is close of $|V|$ $\left(|E| \approx|v|^{2}\right)$, the Gis allal dense.
(3) If $|E|$ is math less than $|\tau|^{2}($ ine $|E| x \mid t)$ then Gis called ghase:
$D_{f f} l_{t} G=\left(V_{1} E\right) b_{s}$
a giath Tha
OIf $|E|$ is clese folv| ($|E| \approx|v|^{2}$), the Gis enlled denise.
(3) If $|E|$ is mach luess than $|v|^{2}(1+i,|\in| x|v|)$

