Lecture 32
Hamiltonian path: A path in a graph that visits each vertex exactly once

Hamiltonian Cylcle- A Hamiltonian path that starts and ends on the same vertex

Dirac's Theorem - If each vertex of a connected graph w / n verticies is adjacent to at least $n / 2$ verticies, then the arable has an H.C.

0
In $G^{*}, \frac{n}{2}=2 \leq \operatorname{deg}(v)$ for $v \in V$
So G* has an H.C
The condition of Arac's the is sufficient (not necessary ∞ sufficient)

Take the ceiling if $n / 2$ is odd

5 vesticies

$$
\frac{n}{2}=3
$$

Q) A complete bipartite graph $K_{n, m}$ has an $H C$ if $n=m$
(2) A complete bipartite graph $K_{n, m}$ has a HP if n and m are identical as differ by one
ex. $K_{5,7}$ has no $H C$ nos HP

Graph Coloring
A proper coloring is an assignment of colors to the verticies of a graph so that no 2 adjacent verticies have the same color.

proper coloring.

improper Coloring.

K-coloring of a graph is a propes coloring involving a total of K

A graph of a K-coloring is called a K - colorable
Every graph $G=(V, E)$ is $|V|$ colorable.

* We are interested in the minimum \# of colors

The complete graph K_{n} is not $(n-1)$-colorable

Pf. Consides any color assignment on the verticies of K_{n} that uses at most $(n-1)$ colors. Since there are n verticies, there exist two verticies in \& v that share a color. However, since K_{n} is
complete, (μ, v) is an edge of the graph. This edge has 2 endpoints $\omega /$ the same color; so this scaling is improper.
Thus, K_{n} is not $(n-1)$-colorable

Inv. Let G be a graph. Then G is 2 -colorable IFF G is bipartite. (PF. in HW 14)

The Chromatic Number of a graph $G, X(G)$ is the minimum integer K such that A is K-colorable Ex. $\chi($ Bipartite $) \leq 2$
Lair $x($ Complete Bipartite $)=2$
Fact: If H is a subgroup of a graph G, then $X(H) \cong X(G)$

Directed graphs (digraph) a graph $G=(\sqrt{ }, E)$ where (u, v) represents an edge from vertex u to vertex v.
Edge (u,v) is called a directed edge and represented by an arrow

* we assume no seef-100ps.

Edge (μ, v)
Incident from: (4) Eincoming edge)
Incident to: (v) (outgoing edge)

* one way streets, Task scheduling.
iu-degree of vertex v : $d_{\text {in }}(v)$

Refs.
(1) The in-dgree of a vertex v, denoted $d_{\text {in }}(v)$, is the number ot edges incidut to V :

(2) The out-in degree of a vertex V, denoted by dort), is the number of edges incident from V :

Ex

$$
\begin{aligned}
& \left.\left.d_{\text {out }}(v)=\mid \int_{\{ }(v, u) \in E: u \in \sqrt{ }\right\}\right) \text {, } \\
& \text { Eck: }
\end{aligned}
$$

$(a) \rightarrow(b)$

$$
\begin{array}{lll}
d_{\text {in }}(a)=0 & d_{\text {in }}(b)=1 & d_{\text {in }}(c)=1 \\
d_{\text {vat }}(b)=1 & d_{\text {out }}(b)=1 & d_{\text {out }}(c)=0
\end{array}
$$

