Lecture 29

Graph Theory
(continued)

TERMINOLOGY

- Two edges \(u \) and \(v \) are adjacent if there exists an edge \((u, v) \).
- A self-loop is an edge \((u, u) \).

If a graph does not have parallel edges & self loops it is **SIMPLE**.

A multigraph can have multiple edges between the same 2 vertices and self loops.

If \((u, v) \) is an edge in graph \(G \), then \((u, v) \) is INCIDENT to vertices \(u \) and \(v \).

- Degree of a vertex is the # of edges incident on it.
- A vertex whose degree is 0
A path of length k from a vertex u to a vertex w is a sequence (v_0, v_1, v_2) of vertices such that:

1. $u = v_0$
2. $w = v_1$
3. (v_i, v_{i+1}) is an edge in E for $i = 1, 2, 3, \ldots, k$

A path is **simple** if all vertices in the path are distinct. Revisiting vertices & edges are allowed in **NON simple** paths.

- **Subpath** - of a path is a continuous subsequence of its vertices.

- **Cycle** - path in which first vertex = last vertex & all edges are distinct except first & last are distinct.
- A **cyclic** graph w/ no simple cycles

If $G = (V, E)$ is a graph, a graph $H = (V', E')$ is a subgraph of G if $V' \subseteq V$ & $E' \subseteq E$

- A spanning subgraph of G is a subgraph of G that contains all vertices of G.

\[H = V' \]
\[E' \text{ is a spanning subgraph of } G \text{ if } V' \subseteq V \text{ and } E' \subseteq E \]

- A graph is connected if every vertex is reachable from all other vertices.

- A connected component G' of graph G is a minimal connected subgraph of G.

has a path
MAXIMAL: there is no way to add into \(G' \) any vertices and/or edges of \(G \) which are not currently in \(G' \) in such a way that the resulting subgraph is connected.