MOTIVATION: visualize flight routes in North America
- natural representation is a graph

1. Create series of nodes (or vertices) w/ each node representing a city
 - each node is airport code
2. Connect any 2 cities (nodes) which have a flight route blw them w/ a line called an edge

* NODES (vertices) specify entities we are interested in.
* EDGES specify relationships blw entities.
Def. A graph $G = (V, E)$ is a finite set of vertices V, and a finite set of edges E, where each edge (u, v) connects 2 vertices, u and v.

1. We have $G = (V, E)$.
 - Vertices $V = \{u, v, w\}$
 - Edges $E = \{(u, v), (v, w), (w, u)\}$

2. $G = (V, E)$.
 - Vertices $V = \{a, b, c, d, e, f\}$
 - Edges $E = \{(a, c), (b, c), (b, d), (c, e), (d, f), (c, f)\}$
Types of Edges

Graph Theory

Types of edges (two types):
1. Directed edges
 - Ordered pair vertices (u,v).
 - For example, (A, B)
 - If A is a friend of B, B is not a friend of A.
 - Example: (A, B) and (B, A) are different edges.
2. Undirected edge
 - Unordered pair vertices (u,v).
 - E.g., a "network" of friends.
 - If Sam is a friend of Bob, then Bob is also a friend of Sam.
 - Example: (e) and (f) are the same edge.

Types of Graphs

0. Directed Graph
 - All edges are directed
 - Route network

@ Undirected Graph
 - All edges are undirected
 - Friend network
Graph Theory

Terminology

- **Def.** Two vertices in a graph are adjacent if there exists an edge (u,v).

- **Def.** Multi-edges (or parallel edges) are edges that have the same endpoints (in an undirected graph) or the same origin and destination (in a directed graph).

- **Def.** A self-loop is an edge (v,v).

- **Def.** A graph does not have parallel edges and self-loops, then it is called single.

- **Def.** A multi-graph can have multiple edges between the same two vertices and self-loops.

In this course, we deal almost exclusively with simple graphs.