

IDEA: Convert recurrance into a tree so each node represents the cost incurred at various levels of recursion.
Then sum the costs of all levels.
Ex. Solve $T(n)=2 T(n / 2)+n^{2}$ using a recursion -tree

$$
T(n / 4)=2 T(n / 8)+(n / 4)^{2}
$$

(1) Write

This
tree

\# of nodes @ level $i=2^{i}$

$$
\text { Cost of node }=\left(\frac{n}{2 i}\right)^{2}
$$

(2)
portal cast $\left.=\begin{array}{l}\text { \# nodes } \\ \text { at level } i\end{array}\right)\left(\begin{array}{c}\text { cost } \\ \text { of each } \\ \text { node @ lev eli }\end{array}\right.$ $\begin{aligned} & \text { node @ levoli }\end{aligned}=(2 i)\left(\frac{n}{2^{1}}\right)^{2}$

$$
=\frac{n^{2}}{2 i}
$$

Total lost at all Levels:

$$
T(n)=\sum_{i=0}^{\text {height of tree }} \text { total cost at level i) }
$$

How to find the height of the tree?
The subproblem size decreases by a factor of 2 everytime we go down a level, eventually we must reach a boundary condition
How far from the root do we reach 1?
Subproblem size for node @ revel h

$$
=n 2^{n}
$$

Thus we reach one when $\frac{n}{2^{n}}=1$, hence $n=\log n$

Recall $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$ when $|x|<1$
(Geometric Series)

Then $T(n)=\sum_{i=0}^{\log n} \frac{n^{2}}{Q^{i}} \leq n^{2}$

$$
\begin{aligned}
& \sum_{i^{20}}^{\infty} \frac{1}{2}=n^{2}\left(\frac{1}{1-\frac{1}{2}}\right)=2 n^{2} \\
& \text { (hus, } T(n)=O\left(n^{2}\right)
\end{aligned}
$$

Ex. Solve $T(n)=3 T(n / 4)+c n^{2}$

At level i, the total cost is

$$
C\left(\frac{3}{10}\right)^{i} n^{2}
$$

$h:$ The height of the tree: $\frac{n}{4^{n}}=1$

$$
h=\log _{4} n
$$

Total cost at CALL levels

$$
T(n)=\sum_{i=0}^{\log _{4}^{n}}\left(\frac{3}{16}\right)^{i} c n^{2} \leq c n^{2} \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i}
$$

$$
\begin{aligned}
& =c n^{2}\left(\frac{1}{1-\frac{3}{16}}\right)=\frac{16}{13} \mathrm{cn}^{2} \\
& C_{\text {Thus }} T(n)=O\left(n^{2}\right)
\end{aligned}
$$

cosr@each=n

$$
w(n)=\sum_{i=0}^{n} n
$$

The longest path from root to a leaf is

$$
\left.n \rightarrow 2 / 3 n \rightarrow(2 / 3)^{2} n \rightarrow \ldots \rightarrow\right)
$$

$$
\left(\frac{2}{3}\right)^{n} n=1
$$

Homework:
https://u.osu.edu/alzalg.1/files/2019/10/updatehw11.pdf

