Iteration method for recurrences

- Decompose recurrence into a series of terms, and derive the \(n^{th} \) expression from the previous ones.

Example: Binary Search (half-interval/logarithmic search)

```c
binary_search(A, lo, hi, x)
{
    if (A[lo] > A[hi])
        return false
    mid = (lo+hi)/2
    if (x = A[mid])
        return true
    if (x < A[mid])
        binary_search(A,lo,mid-1,x)
    if (x > A[mid])
        binary_search(A,mid+1,hi,x);
}
```

\[
A = \{1, 2, 3, 4, 5, 7, 9, 11\} \quad n=8
\]

\[x = 7 \quad lo = 1 \quad hi = 8\]

\[
\text{mid} = \frac{1 + 8}{2} = 4.5 \quad \text{integer mid} = 4
\]

\[A[\text{mid}] = A[4] = 4\]
\[\text{mid} = \lfloor (5+8)/2 \rfloor = \lfloor 6.5 \rfloor = 6 \]
\[A[\text{mid}] = A[6] = 7 \]
\[A[\text{mid}] = A[6] = 7 \]

\[X = 6 \]

From the binary search alg. above...

\[T(n) = C + T(n/2) \]

Find explicit formula of \(T(n) \) using the iteration method.

\[T(n) = C + T(n/2) \]
\[= C + C + T(n/4) \]
\[= C + C + C + T(n/8) \]
\[= C + C + C + C + T(n/2^k) \]

\[= kC + T(n/2^k) \]

Assuming \(n = 2^k \), then \(k = \log n \)

\[T(n) = C \log n + T(1) \]

Thus \(T(n) = O(\log n) \)
Merge sort

- efficient sorting alg.
- input
 \(\rightarrow \) unsorted array \(E \)
 \(\rightarrow \) integers \(\text{first}, \text{last} \)
- output
 \(\rightarrow \) array \(E \) containing a permutation of the input such that
 \[E[\text{first}] \leq E[\text{first}+1] \leq \ldots \]
 \[E[\text{last}-1] \leq [\text{last}] \]

Idea:

1. Divide inserted list (array) into \(n \) sublists, each containing one element (a list of one element is considered sorted)
2. Repeatedly merge sublists to produce new sorted sublists until there is 1 sublist remaining (this is the sorted list)

Merge sort uses the "merge" func., built into C++ STL

```c++
merge_sort(E, first, last)
{
    if (first<last)
        mid=floor(first+last)/2;
        merge_sort(E,first,mid);
        merge_sort(E,mid+1,last);
        merge(E,first,mid,last);
}
```
Drop constant time c in favor of larger time n

\[T(n) = n + 2 T(n/2) \]

Now use iteration to solve

\[T(n) = n + 2 T(n/2) = n + 2(\frac{n}{2} + 2 T(n/4)) \]
\[= n + n + 4 T(n/4) \]
\[= n + n + 8 T(\frac{n}{8}) \]
\[= 3 n + 2^3 T(n/2^3) \]
\[= 4 n + 2^4 + T(n/2^4) \]
\[= 8 n + 2^5 T(n/2^5) \]

Change of variables

IDEA: We transform the recurrence to one that we have seen before.

1. Solve the recurrence
 \[T(2^m) = 2T(2^m) + \log_2 n \]
 Where \(m = \log_2 n \) and \(n = 2^m \)
 \[T(2^m) = S(2^m) + m \]

2. Recurrence \(k = m \) and \(S(k) = T(2^k) \).

 \[S(k) = 2 S(k/2) + k \log_2 k \]

 From the previous example, we have
 \[S(k) = O(k \log k) \]

 Thus, \(T(n) = T(2^n) \)
 \[= S(m) = O(m \log m) = O(\log n \log(\log n)) \]