Lecture 25

- Harder to determine running time for recursive functions

- Running time is represented by an equation in terms of its value on a smaller input

 \[T(n) = T(n-1) + c \]

 1. Find an explicit formula of the expression
 2. Bound the recurrence by an expression that involves \(n \)

 ex. Recursive algorithm that loops through the input to eliminate one item

 \[T(n) = T(n-1) + 1 \quad T(n) = T(n-1) + n, \text{ etc.} \]

 ex. Recursive algorithm that halves the input

 \[T(n) = T(n/2) + c \quad T(n) = T(n/2) + n, \text{ etc.} \]

 ex. Recursive algorithm that splits input into 2 halves

 \[T(n) = 2T(n/2) + 1, \text{ etc.} \]
We consider the recursive program shown below, which computes the factorial function $n!$.

```c
int fact(int n) {
    if (n <= 1)
        return 1;
    else
        return n * fact(n-1);
}
```

- **Constant time:** C_1
- **Cost time:** Constant time
- **C_2 + time taken by func. fact**

$T(n) = C_2 + T(n-1)$, $n > 1$
$T(1) = C_1$

Methods for solving Recurrences:

1. Substitution/Induction Method
2. Iteration Method
3. Recursion-Tree Method
4. Master Method - skip

Substitution/Induction
Iteration
Recursion-Tree
Substitution/Induction Method
 * use mathematical induction

Ex. Solve $T(n) = T(n-1) + C_2$, $n > 1$
 $T(1) = C_1$ (Factorial)

Note that
 $T(1) = C_1$
 $T(2) = T(1) + C_2 = C_1 + C_2$
 $T(3) = T(2) + C_2 = C_1 + C_2 + C_2$
 = $C_1 + 2C_2$
 ...$T(n) = C_1 + (n-1)C_2$

This is not a proof!

Induction:
Base case: $T(1) = C_1$
Assume that $T(k) = C_1 + (k-1)C_2$ for $k < n$
We prove that $T(k+1) = C_1 + kC_2$ (Easy)

$T(k+1) = T(k) + C_2$
 = $C_1 + (k-1)C_2 + C_2$
 = $C_1 + kC_2$

The running time for the recursive program for fact. ($n!$) is $O(n)$.
Ex. Solve $T(1) = 1$, $T(n) = 3T(n-1) + 4$, $n > 1$.

Answer: $T(n) = 3^n - 2$

Binary Search

Ex. Solve $T(1) = 0$,

$T(n) = T(n/2) + 1$, $n > 1$

Assuming n is a power of 2.

Sol. By repeated substitution, we have

$T(1) = 0 = \log 1$

$T(2) = T(2/2) + 1 = T(1) + 1 = 0 + 1 = 1 = \log 2$

$T(3) = T(3/2) + 1 = T(1) + 1 = 0 + 1 = 1 = \log 2$

NOT ACCEPTABLE

$T(4) = T(4/2) + 1 = T(2) + 1 = 1 + 1 = 2 = \log 2^2 = \log 4$

\vdots

$T(n) = \log (n)$
Prove that $T(n) = \log(n)$ by induction.

Base Case: $T(1) = 0 = \log 1$

Inductive Hypothesis: Assume that

$T(k) = \log k$ for all $k < m$

We now show that $T(m) = \log m$

Now, $T(m) = T(m/2) + 1$

$$= \log \left(\frac{m}{2} \right) + 1$$

$$= \log(m) - \log(2) + 1$$

$$= \log(m)$$

$\therefore T(n) = \Theta(\log n)$
Example: Let \(T(n) = T(n-1) + T(n-2) + 1 \) for \(n \geq 2 \)

\[T(0) = T(1) = 1 \]

Show that \(T(n) \leq 2^n \)

(\(T(n) = O(2^n) \))

Proof:

\[T(n) = T(n-1) + T(n-2) + 1 \]

Induction:

Base case: \(T(0) = 1 \) and \(T(1) = 1 \), which is true.

Inductive step: Assume \(T(k) \leq 2^k \) for \(k < n \).

Next,\[T(n) = T(n-1) + T(n-2) + 1 \]

\[\leq 2^k + 2^k + 1 \]

\[\leq 2^k + 2^k \left(\frac{2^m}{2^k} \right) \]

\[= 2^{k+1} \]

By induction, \(T(n) \leq 2^n \).
Divide and Conquer

IDEA:
Divide the problem into "simpler" versions of itself.
Conquer each problem using the same process/recursively.
Combine the results of the "simpler" versions into the final answer.

Examples: Binary search, Merge sort.

Some recursive algorithms are distinguished as:
- **Chop and compare** $T(n) = T(n/2) + f(n)$
 - e.g., $T(n) = T(n/2) + C, \Theta(n)$
- **Divide and Conquer** $T(n) = \Theta(n \log n)$
 - e.g., $T(n) = T(n/2) + C, \Theta(\log n)$

Suppose $n = 2^k$:
- Example functions
 - $T(n) = \Theta(n^{3/2}) - \Theta(2^n/n^2)$

See Handout #2.