

- Harder to determine running time for recursive functions
- Running time is represented by an equation in terms of its value on a smalles input

$$
E x \cdot T(n)=T(n-1)+C
$$

(1) Find an explicit formula of the expression
(2) Bound the reccurance by an expression that involves n
ex. Recursive algorithm that loops Through the input to eliminate ane item
$T(n)=T(n-1)+1 \quad T(n)=T(n-1)+n$, etc.
ex. Recursive algorithm that halves the input

$$
T(n)=T(n / 2)+c \quad T(n)=T(n / 2)+n \text {, etc. }
$$

ex. Recursive algorithm that splits input into 2 halves

$$
T(n)=2 T(n / 2)+1 \text {,etc }
$$

We consider, the recursive prog, shown below, which computes The factorial fund n !
int fact $($ int $n)$

Cost time Constant time
$C_{2}+$ time $T(n)=C_{2}+T(n-1), n>1$ taken by
func. fact $T(1)=C_{1}$

Methods for solving \$ecurrances
(1) Substitution /induction Method
(2) Iteration Method
(3) Recursion - tree method
(4) Master Method - skip

Substitution/mcluction
Itesatiaic
Pecussiou - Thee
(1) Substitution / Induction Method

* use mathematical induction

Ex. Solve $T(n)=T(n-1)+C_{2}, n>1$

$$
I(l)=C_{1} \quad \text { (Factorial) }
$$

Note that $T(1)=C_{1}$

$$
\begin{aligned}
T(2) & =T(1)+C_{2}=C_{1}+C_{2} \\
T(3) & =T(2)
\end{aligned}+C_{2}=C_{1}+C_{2}+C_{2} .
$$

This is proof! $\rightarrow T(n)=C_{1}+(n-1) C_{2}$
Inductions:
Base case : $T(1)=C_{1}$
Assume that $T(k)=c_{1}+(k-1) c_{2}$ for $k=n$
We prove that $T(k+1)=C_{1}+k c_{2}$ (Easy)

$$
\begin{aligned}
T(k+1) & \stackrel{(x)}{\sim} T(k)+c_{2} \\
& =c_{2}+(k-1) c_{2}+c_{2} \\
& =c_{1}+k \cdot c_{2}
\end{aligned}
$$

The running time for the recursive program for fact. (n!) is $O(n)$

Ex. Solve $T(1)=1$,

$$
T(n)=3 T(n-1)+4, n>1
$$

Binary search
$E x$. Solve $T(1)=0$,

$$
T(n)=T(n(2)+1, n>1
$$

Assuming n is a power of 2)
Sol. By repeated substitution, we have

$$
\begin{gathered}
T(1)=0=\log 1 \\
T(2)=T(2 / 2)+1=T(1)+1=0+1=\log 2 \\
T(0)=T(2 \mid 2)+1=T(2)+1 \\
\text { NOT ACCEPTABLE } \\
T(4)=T(4 / 2)+1=T(2)+1=1+1=2= \\
\log _{2} 2^{2}=\log ^{4} 4 \\
T(n)=\log (n)
\end{gathered}
$$

Prove that $T(n)=\log (n)$ by induction Base case: $T(1)=0=\log 1 v$
Inductive Hypothesis: Assume that $\tau(k)=\log k$ for all $k<m$ we now show that $T(m)=\log m$ Now, $T(m)=T(m / 2)+1$

$$
\begin{aligned}
& =\log \left(\frac{m}{2}\right)+1 \\
& =\log (m)-\log (2)+1 \\
& =\log (m) \\
\therefore T(n) & =O(\log n)
\end{aligned}
$$

Ex. Let $\tau(n)=T(n-1)+T(n-2)+1$

$$
T(0)=T(1)=1
$$

Show that $T(n) \leq 2^{n}$
(so $T(n)=O\left(Q^{n}\right)$) Proof I

