Determining precise formula for running-time $f(n)$ is difficult

- Simplify by using a big O expression
 $O(g(n))$ is an upper bound on $f(n)$

Properties of big-O

1. **Simplicity**
 $$f(n) = O(g(n))$$
 $g(n)$ is a big O bound on $f(n)$
 $g(n)$ is **simple** if
 - It is a single term **AND**
 - Coefficient is 1

 Example
 $$\sum_{i=0}^{n-1} i = \frac{n^2}{2}$$

 Let $g(n) = c_1n^2 + c_2n + c_3$, where $c_1 = c_2 + c_3$, $c_2 = 2c_2$ and $c_3 = c_1 + c_2$

 Let $g(n) = c_1n^2 + c_2n + c_3$, $g_2(n) = c_1n^2$, $g_3(n) = n^2$

 Then $f(n) = O(a_i(n))$ for each $i = 1, 2, 3$
Note: \(g_1 \) & \(g_2 \) are not simple
\(g_2 \) is simple

So the running time is \(O(g_3(n)) \)
which is \(O(n^2) \)

2) Tightness

We want the "tightest" big-O bound we can prove. If \(f(n) = O(g(n)) \)
then we cannot find a func.
\(h(n) \) that grows at least as fast as \(f(n) \) but grows slower
than \(g(n) \)

\(g(n) \) is tight bound on \(f(n) \) if

1. \(f(n) = O(g(n)) \) AND
2. IF \(f(n) = O(h(n)) \) then it is also true that \(g(n) = O(h(n)) \)

ex 2) Running time for alg. in ex(1)
\(f(n) = C^3 n^2 + C'' n + C''' \)

We had \(g_3(n) = n^2 \)
Let \(g_4(n) = n^3 \)
CLAIM #1 \(g_3(n) \) is tight bounded on \(f(n) \)

CLAIM #2 \(g_4(n) \) is NOT a tight bound

Proof of Claim #1

\[f(n) = O(g_3(n)) \]
Suppose \(f(n) = O(h(n)) \)

Then there are \(c \) and \(n_0 \) such that

\[f(n) = c'n^2 + c''n + c''\leq c h(n) \]
for all \(n \geq n_0 \)

Then \(h(n) \geq \left(\frac{c'}{c} \right) n^2 \)

for all \(n \geq n_0 \)

But \(g_3(n) = n^2 \) then \(g_3(n) \leq \left(\frac{c}{c} \right) h(n) \)

for all \(n \geq n_0 \)

Thus \(g_3(n) = O(h(n)) \)

Proof of Claim #2

Pick \(h(n) = n^2 \)

we have \(f(n) \) is \(O(h(n)) \)

but \(n^2 \) is not \(O(h(n)) \)

FACT: Show \(f(n) = \Theta g(n) \) to prove \(g(n) \) is a tight bound on \(f(n) \)
Ex. In previous example we showed
\[f(n) = n^8 + 7n^7 - 10n^5 - 2n^4 + 3n^2 - 14 \]
is \(\Theta(n^8)\)

This means \(n^8\) is a tight bound on \(f(n)\)

Analyzing Running Time of a Program

<table>
<thead>
<tr>
<th>Big-O</th>
<th>Informal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>constant</td>
</tr>
<tr>
<td>(O(\log n))</td>
<td>logarithmic</td>
</tr>
<tr>
<td>(O(n))</td>
<td>linear</td>
</tr>
<tr>
<td>(O(n \log n))</td>
<td>(n \log n)</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>Quadratic</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>Cubic</td>
</tr>
<tr>
<td>(O(n^k))</td>
<td>Polynomial</td>
</tr>
<tr>
<td>(O(2^n))</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

Algorithms with running times...

\[\{ \Theta(n) \text{ have linear complexity}, \quad \Theta(n^2) \text{ have quadratic}, \quad \Theta(n^k) \text{ have polynomial complexity} \]
Efficient usually means polynomial complexity.

1. Simple Statements $O(1)$
2. If - Statement
3. For - Statement
4. While - Statement
5. Do-While Statement