

- Deterring precise formula for running time $f(n)$ is difficult
- Simplify by using a big O expression $O(g(n))$ is an upper bound on $f(n)$
PROPERTIES of big-o
(1) Simplicity

$$
f(n)=O(g(n))
$$

$g(n)$ is a big O bound on $f(n)$ $g(n)$ is simple if
(1) It is a single term AND
(2) Coefficient is 1
ex) $810 m=0$;

$$
\begin{aligned}
& \text { fer }(i=0, i<n, i++) ; \\
& \quad \operatorname{fos}(j=0, j<n, j++) ;
\end{aligned}
$$

sum + = arr [i][j];
is $f(n)=C^{3} n^{2}+c^{\prime \prime} n+c^{\prime \prime \prime}$, where

$$
c^{\prime}=c_{2}+c_{3}, c^{\prime \prime}=2 c_{2} \text { and } c^{\prime \prime}=c_{1}+c_{2}
$$

Let $g(n)=c^{2} n^{2}+c^{\prime \prime} n+c^{\prime \prime \prime}$,

$$
\begin{aligned}
& g_{2}(n)=c^{2} n^{2} \\
& g^{3}(n)=n^{2}
\end{aligned}
$$

Then $f(n)=O\left(a_{i}(n)\right)$ for each $(21,2,2$

Note: $g_{1} \& g_{2}$ are not 8 rimple g^{3} is simple

So the running time is $O\left(g_{3}(n)\right)$ which is $O\left(h^{2}\right)$
(2) Tightness
we want the "tightest" big-0 bound we can prove. If $f(n)=O(g(n))$ then we cannot find a func. $h(n)$ that grows at least as fast as $f(n)$ but grows slower than $g(n)$
$g(n)$ is tight bound on $f(n)$ if
(1) $f(n)=O(g(n)) A N D$
(2) If $f(n)=O(n(n))$ then it is also true that $g(n)=O(n(n))$
ex 2) Running time for alg. in $\operatorname{ex}(1)$

$$
f(n)=c n^{2}+c^{\prime \prime} n+c^{\prime \prime \prime}
$$

We had $g_{3}(n)=n^{2}$
Let $g_{4}(n)=n^{3}$

CLAIM \#1 $g_{3}(n)$ is tight bounded on $f(n)$
CLAM M \#2 $g_{4}(n)$ is NOT a tight bound
Proof of Claim \#1

$$
f(n)=O\left(g_{3}(n)\right)
$$

Suppose $f(n)=O(n(n))$
Then there are C and n_{0} such that

$$
f(n)=c^{\prime} n^{2}+c^{\prime \prime} n+c^{\prime \prime \prime} \leqslant c h(n)
$$

for all $n \geq n_{0}$
Then $h(n) \geqslant\left(\frac{c^{1}}{c}\right) n^{2} \quad r$
for all $n \geqslant n_{0}$
But $g_{3}(n)=n^{2}$ then $g_{3}(n) \leq\left(\frac{c}{C}\right) h(0)$ for all $n \geqslant n_{0}$
Thus $g_{B}(n)=O(h(n))$
Proof of Claim \# 2
Pick $h(n)=n^{2}$
We have $f(n)$ is $O(h(n))$ but n^{3} is not $O(h(n))$

FACT: Show $f(n)=\theta g(n)$ to prove $g(n)$ is a tialet bound on $f(n)$

$$
0, \cdots \cdots
$$

Ex. in previous example we showed

$$
\begin{aligned}
& f(n)=n^{8}+7 n^{7}-10 n^{5}-2 n^{4}+3 n^{2}-17 \\
& \text { is } \theta\left(n^{8}\right)
\end{aligned}
$$

This means n^{8} is a tight bound on $f(n)$
\triangle Analyzing s Punning Time of a Pons am

Brig-O	Informal Name
$O(1)$	constant
$O(\log n)$	logarithmic
$O(n)$	linear
$O(n \log n)$	n log n
$O\left(n^{2}\right)$	Quadratic
$O\left(n^{3}\right)$	cubic
$O\left(n^{k}\right)$	Polynomial
$O\left(2^{k}\right)$	Exponential

Algorithms with running times...
$\left\{\begin{array}{l}\theta(n) \text { have linear complexity } \\ \theta\left(n^{2}\right) \text { have quadratic } \\ \theta\left(n^{k}\right) \text { have polynomial completing }\end{array}\right.$

Efficient usually means polynomial complexity
(1) Simple statements
$O(1)$
(2) If -statement
(3) Fos-siatement
(4) while- statement
(5) DO-while statement

