LECTURE 22

$$
\begin{aligned}
c & <\log n<\log ^{2} n \ll \sqrt{n} \ll n \ll n \log n \\
& <n^{1.1}<n^{2} \ll n^{3}<n^{4} \ll 2^{n} \ll 3^{n}<n!<n^{n}
\end{aligned}
$$

Ex. Show that $\log (n!)=O(n \log n)$
Pf. If $n \geq 1, n!=n(n-1)(n-2) \ldots$ (8)(2)(1)

$$
\leq \underbrace{n, n, n \ldots \ldots n, n, n}_{n \text { times }}
$$

$$
=n^{n}
$$

Then $\log (n!) \leq \log \left(n^{n}\right)=n \lg n$

$$
\therefore \log (n!)=O(n \log n)
$$

Recall:
(1) $A \leq B \Rightarrow \log A<\log B$
(2) $\log A^{A}=p \log A$
(3) $B \log _{B}^{A}=A$
in particular, $2 \log A=A$
(4) $\log (A \mid B)=\log A-\log B$

Ex. Show that $(\sqrt{2})^{\log n}=O(\sqrt{n})$

$$
\begin{aligned}
& \text { Pf. }(\sqrt{n})^{\log n}=\left(2^{1 / 2}\right)^{\log n}=2^{\frac{1}{2} \log n} \\
&=n^{1 / 20}=\sqrt{n} n^{1 / 2} \\
& \text { Thur } \sqrt{2^{\log n}}=O(\sqrt{n}) \\
& \text { same }
\end{aligned}
$$

Ex. Prove that $n^{8}+7 n^{7}-10 n^{5}-2 n^{4}+3 n^{2}-17$

$$
=\theta\left(n^{8}\right)
$$

Pf. To prove the result, we slow that $f(n)=O\left(n^{8}\right)$ and $f(n)^{\prime}=\Omega\left(n^{8}\right)$
If $n \geq 1$, we have
(1)

$$
\begin{aligned}
& n^{8}+7 n^{7}-10 n^{5}-2 n^{4}+3 n^{2}-17 \\
& \leq n^{8}+7 n^{7}+3 n^{2} \leq n^{8}+7 n^{8}+3 n^{8} \\
&=\underbrace{11 n^{8}}_{c}
\end{aligned}
$$

(2) Prove that $f(n)=\Omega\left(n^{8}\right)$ by proving
$c n^{8} \leq f(n)$ for some $c>0$ for all $n \geqq n_{0}$
Since $f(n)=n^{8}+7 n^{7}-10 n^{5}-2 n^{4}+8 n^{2}-17$ Pemove positive lessens for.

$$
\begin{aligned}
& \stackrel{n \geq 1}{\geqslant} n^{8}-10 n^{5}-2 n^{4}-17 \\
& \geqslant n^{8}-10 n^{7}-2 n^{7}-17 n^{7} \\
& =n^{8}-29 n^{7} \quad \begin{array}{l}
\text { if yam } \\
\text { take to to }
\end{array}
\end{aligned}
$$

instead we wort on $n^{8}-29 n^{7}$ take to tom, by finding c \& no so that $\begin{gathered}\text { waged be } \\ \text { negate }\end{gathered}$

$$
c n^{8} \leq n^{8}-29 n^{7}
$$

Note that $c n^{8} \leq n^{8}-29 n^{7} \Leftrightarrow 29 n^{7} \leq(1-c) n^{8}$

$$
\begin{aligned}
& \Leftrightarrow 29 \leq(1-c) n \\
& \Leftrightarrow c \leq 1-\frac{29}{n}
\end{aligned}
$$

(2×29)
If $n \geq 58$, then $c=1 / 2$ suffices
Thus, if $n \geq 58$, then $\frac{1}{2} n^{8} \leq f(n)$

$$
\begin{gathered}
f(n)=\Omega\left(n^{8}\right) \\
c n^{8} \leq n^{8}-29 n^{7} \\
c n^{8}-n^{8} \leq-29 n^{7} \\
n^{8}(c-1) \leq-29 n^{7} \\
c-1 \leq \frac{-29 n^{7}}{n^{7}} \\
c \leq 1-\frac{29}{n}
\end{gathered}
$$

Proving that Big O Relationship does not hold
To prove $f(n)$ is not big-0 of some other func. $g(n)$, we assume that witnesses no and exist \& derive a contradiction
Ex. Prove that n^{2} is not $O(n)$
Pf. Suppose that $n^{2}=O(n)$. Then there exist $n_{0} \& c$ such that

$$
n^{2} \leq c n \text { for all } n \geq n_{0}
$$

- Pick n_{1} equal to the larges of $2 c$ and n_{0}

Then $n_{1}^{2} \leq c n_{1}$ Clivide dy $n_{1}>n_{1} \leq c$
Contradiction tells us that n^{2} is not $O(n)$

Proof using limits
Brief Review of Limits
The. Let a and c be real \#s then
(1) $\lim _{n \rightarrow \infty}=a$
(2) If $a>0, \varliminf_{n \rightarrow \infty} n^{a}=\infty$
(3) If $a<0, \operatorname{l}_{n \rightarrow \infty} n^{a}=0$
(4) If $a>1, \bigcup_{n \rightarrow \infty} a^{n}=\infty$
(6) If $0<a<1, \ell_{n \rightarrow \infty} a^{n}=0$
(6) If $c>0, \operatorname{l}_{n \rightarrow \infty} \log _{c}^{n}=\infty$

Thu: If $\bigcup_{n \rightarrow \infty} f(n)=\infty$, then $\underset{n \rightarrow \infty}{ } \frac{1}{f(n)}=0$
Thu: Let a be a finite real \# and let $\bigcup_{n \rightarrow \infty} f(n)=A$ and $\ell_{n \rightarrow \infty} g(n)=B$
(A \& B are finite real \#S) Then
(1) $\bigcup_{n \rightarrow \infty}$ a $f(x)=a \varliminf_{n \rightarrow \infty} f(n)=a \wedge$
(2) $\bigcup_{n \rightarrow \infty}\left(f_{(n)}+g(n)=A \pm B\right.$
(B) $\bigcup_{n \rightarrow \infty} f(n) g(n)=A \times B$
(4) If $B \neq 0, \operatorname{lom}_{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{A}{B}$ WiHôpital's Pule

Proofs using Limits
Thu let $f(n)$ \& $g(n)$ be funcs such that $\varliminf_{n \rightarrow \infty} \frac{f(n)}{g(n)}=A$ then
(1) If $A=0$, then $f(n)=O(g(n))$
(2) If $A=\infty$, then $f(n)=$
(3) If $O<A<\infty$, then $f(n)=\theta(g(n))$

Use limits to prove that
(1) $5 n^{8}=\theta\left(n^{8}\right)$ make $\frac{f(n)}{g(n)}$

Pf. $\operatorname{lin}_{n \rightarrow \infty}^{K} \frac{5 n^{8}}{y^{8}}=5-A$
So $5 n^{8}=\theta\left(n^{8}\right)$
(2) $n^{2}=O\left(n^{4}\right)$

Pf. $\bigcup_{n \rightarrow \infty} \frac{n^{2}}{n^{4}}=\bigcup_{n \rightarrow \infty} \frac{1}{n^{2}}=Z E R O$

$$
\begin{aligned}
& \text { (3) } n^{4}-23 n^{3}+12^{2}+15 n-21=\Theta\left(n^{4}\right) \\
& \text { Pf. } \bigcup_{n \rightarrow \infty} \frac{n^{4}-23 n^{3}+12 n^{2}+15 n-21}{n^{4}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{4}}{n^{4}}-\frac{23 n^{3}}{n^{4}}+\frac{12 n^{2}}{n^{4}}+\frac{15 h}{n^{4}}-\frac{21}{n^{4}}\right) \\
& =1 \quad \text { Case } 3
\end{aligned}
$$

