

Induction
-Prove that the sum of the first n odd natural numbers is equal to n^{2}
BY INDUCTION:

$$
P(n)=" 1+3+5+\ldots+(2 n-1)=n^{2} "
$$

for all $n \in \mathbb{N}$

Base Case:
$P(1)$, substitute $n=1$

$$
1=2(1)-1=1^{2} \quad V
$$

Inductive Hypothesis: Assume that $P(k)$ holds. That is $1+3+5+\ldots+(2 k+1)=k^{2}$ is true.
Inductive stop: want: $P(k+1)$ holds That is: $\underbrace{1+3+5+\ldots+(2 k-1)}_{k^{2}}+\left((2(k+1)-1) \stackrel{?}{=}(k+1)^{2}\right.$

$$
\begin{aligned}
& =k^{2}+2(k+1)-1 \\
& =k^{2}+2 k+2-1 \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

$P(k+1)$ is true, Thus $P(n)$ holds for all $n \in \mathbb{N}$
(Ex) prove that for all $n \in N$, we have $1^{2}+2^{2}+\ldots+n^{2}$

$$
=\frac{n(n+1)(2 n+1)}{6}
$$

Base lase: $n=1$

$$
\begin{aligned}
1^{2} & =\frac{1(1+1)(2(1)+1)}{6} \\
1 & =\frac{1(2)(3)}{6} \\
1 & =1 v^{6}
\end{aligned}
$$

Pecurrance - an equation os inequality that describes a function in terms of its values on males indents.

$$
\begin{aligned}
& E \times \text { (1) } T(n)=T(n-1)+1, T(0)=1 \\
& T(0)=1 \\
& T(1)=T(0)+1=2 \\
& T(2)=T(1)+1=3 \\
& \text { ETC. } T(n)=3 T(n-1)+4, T(1)=1 \\
& \text { (3) } T(n)=T(n / 2)+1, T(1)=0
\end{aligned}
$$

$E x)$ Let $T(n)=T(n-1)+1$
$n \in \mathbb{N}$ and $T(0)=1$.
Show that $T(n)=n+1$
By Induction on n
Base Case:

$$
T(0)=1=0+1
$$

Inductive Hypothesis:
Assume that $T(k)=k+1, k \in \mathbb{N}$ Inductive Step:

WANT: $T(k+1)=(k+1)+$

$$
T(k+1)=T(k)+1=(k+1)+1=k+2
$$

$T(e+1)$ is true
Summations
(1) Arithmetic Series

$$
\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n+1}{2}
$$

(2)

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2}=1^{2}+ & 2^{2}+3^{2}+\ldots n^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3} & =1^{3}+2^{3}+\ldots n^{3} \\
& =\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

(4) Geometric Series

$$
\sum_{k=1}^{n} x^{k}=1+x+x^{2} \ldots x^{n}=\frac{x^{n+1}-1}{x-1}
$$

(5) Special case geometric series IF $|x|<1$

$$
\sum_{k=0}^{n} x^{k}=\sum_{k=0}^{\infty} x^{k} \cdot \frac{1}{1-x}
$$

(6) Harmonic Series

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{k} & =1+\frac{1}{2}+\frac{1}{3} \cdots \frac{1}{n} \\
& =\ln (n)+\theta(n)
\end{aligned}
$$

(7) $\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}$ for $|x|<1$

Homework:

