Lecture 15

Induction

-Prove that the sum of the first- n Odd natural numbers is equal to n²

BY INDUCTION:

$$P(n) = "[+3+5+...+(Qn-1)=n^2"]$$

for all nEN

Base Case:

$$P(i)$$
, substitute $n \ge 1$
 $1 \ge 2(i) \ge 1^2 \sqrt{2}$

Inductive Hypothesis: Assume that P(k)holds. That is $1+3+5+...+(2k+1)=k^2$ is the. Inductive Step: Want: P(k+1) holds That is: $1+3+5+...+(2k-1)+((2k+1)-1)\stackrel{?}{=}(k+1)^2$ k^2

=
$$k^{2} + 2(k+1) - 1$$

- $k^{2} + 2k + 2 - 1$
= $k^{2} + 2k + 1$
= $(k+1)^{2}$

P(k+1) is the, thus P(n) holds for all nEN

Fix) prove that for all nEN,
we have
$$l^2 + 2^2 + ... + h^2$$

= $n(n+1)(2n+1)$
6

Base case:
$$n \ge 1$$

 $|2 \stackrel{?}{=} \frac{1(1+1)(Q(1)+1)}{6}$
 $|2 = 1(2)(3)$
 $|2 = 1\sqrt{6}$

Recurrance - an equation or inequality
that describes a function in terms
of its values on smalles inputs -
Ex) O T(n) = T(n-1)+1, T(0)=1

$$T(0)=1$$

 $T(1)=T(0)+1=2$ ETC.
 $T(2)=T(1)+1=3$
 $T(n)=3T(n-1)+4, T(1)=1$
 $T(n)=T(n|2)+1, T(1)=0$
Ex) Let $T(n)=T(n-1)+1$
 $n \in \mathbb{N}$ and $T(0)=1$.
Show that $T(n)=n+1$
By Induction on n

Inductive Hypothesis: Assume that T(k)= k+1, kEM Inductive Step:

Base Case:

T(0) = | = 0 + |

WANT: T(k+1) = (k+1) + 1T(k+1) = T(k) + 1 = (k+1) + 1 = k+2T(k+1) is the

(3)
$$\sum_{k=1}^{n} k^{3} = |^{3} + 2^{3} + ... n^{3}$$

 $k^{2}(= n^{2}(n+1)^{2}$
 4

(4) Geometric Series

https://u.osu.edu/alzalg.1/files/2019/09/hw6.pdf