The Scope of a variable

\(P(x) = \text{"x is an even number"} \)
\(Q(x) = \text{"x is an odd number"} \)

\(\forall x, (P(x) \lor Q(x)) \quad \text{TRUE} \)

\(\forall x, P(x) \lor \forall x, Q(x) \quad \text{FALSE} \)

Mathematical Induction

- Powerful & elegant technique for proving certain types of mathematical statements (like falling dominos)

1. Prove the first statement true (knock over first domino)
2. Prove if claim(\(k \)) is true, then claim(\(k+1 \)) is true. When the \(k \)-th domino falls it knocks over domino \(k+1 \)

\(\text{Infinite \# of claims to prove: } \)
\(\text{claim(1)}, \text{ claim (2)} \ldots \text{ claim(n)} \)
If the steps are accomplished, we are assured all the claims are true.
Principle of Mathematical Induction for Predicates

Let \(P(x) \) be a sentence whose domain is \(\mathbb{N} \) such that

1. \(P(1) \) is true
2. \(P(k) \) is true \(\Rightarrow P(k+1) \) is true, for all \(k \in \mathbb{N} \)

\(P \) is true for all \(n \in \mathbb{N} \)

Base step

Inductive step

Inductive hypothesis

Ex) prove that the sum of the first \(n \) integers is \(\frac{n(n+1)}{2} \)

(show that \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \))

1. Look for the base case
 Substitute, \(n = 1 \)
 \[1 = \frac{1(1+1)}{2} \]
 \[1 = 1 \]

2. State inductive hypothesis
 \[1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2} \]

Inductive step

\[P(k+1) = \left(1 + 2 + \ldots + k + (k+1) \right) = \frac{(k+1)(k+2)}{2} \]
\[P(k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k+1}{2} [k+2] \]