

Universal sets of Logical Operators
A set of operators, such as $\{\wedge, \vee, \neg\}$, that can be used to express any proposition is called universal

NOTE: The set of operators in $\{\wedge, \neg\}$ is also universal, as $P \vee Q$ can be expressed using just \neg and 1

$$
\begin{aligned}
& =P \vee Q \stackrel{D N L}{\equiv} \neg \neg(P \vee Q) \equiv \neg(\neg P \wedge \neg Q) \\
& E x) P \vee(\neg Q \wedge R) \equiv \neg(\neg P \wedge \neg(\neg Q \wedge R))
\end{aligned}
$$

$E \times c$ (1) Prove that the set of operators $\{v, \neg\}$ is universal
(2)
". is NOT universal

Predicate Logic
A predicate is I al proposition whose tint value depends on the value of one os more variables
Ex) (1) $P(x)=" x>4$ "
Predicate on one variable
(2) $Q(x, y)=" x \geqslant y^{\prime \prime}$

As $Q(5,4)$ is true, but $Q(4,5)$ is false
Quantifiers
An expression (such as "every", "there exists") that indicates the scope of a term to which it is attached
(1) Every prime * greater than 2 is odd.
(2) There exists an even prime \# \rightarrow quantifier
(3) For all integers greater than 0 , there are no positive integers a, b, and c that satisfy $a^{n}+b^{n}=c^{n}$ \longrightarrow quantifiers
$\longrightarrow " A L L "$
$\forall=$ "every" os "for all"
and are called UNIVERSAL QUALIFIEBS
$\exists=$ "there is" "there exists"
and are called EXISTENTIAL QUALIFIERS
\rightarrow "Exists"

Ex) Let $P(x)=" x^{2}>4$ ", then
(1) $\exists x \in \vec{N}, P(x)$ is a
(1) $\exists x \in \mathbb{N}, P(x)$ is a prop that means "there is a natural number x such that

$$
x^{2}>4 " \text { TRUE }
$$

(2) $\forall x \in N, P(x)$ is a prop that means "for every s natural number x we have

$$
x^{2}>40 \quad \text { FALSE }
$$

Universe of Discourse/Domain of Discourse/ D The set of the possible values of the variables in the predicate
important to state the domain
The simplest form of quantified formula is A quantifier, a variable, a predicate
(1) We write $\forall x \in D, P(x)$
= "A Predicate $P(x)$ is the for all values of x in some set D
For all $x \in D, P(x)$ is the
(2) $\exists x \in D, P(x)$
" "A predicate $P(x)$ is true for at least one
value of x in D
There exists $x \in D$ such that $P(x)$ is true

$$
E x: \exists n \in \mathbb{N}, n=n^{2}
$$ some natural $\#$ is equal to its own square

Homework:
https://u.osu.edu/alzalg.1/files/2019/09/hw4.pdf

