CSE 2321 Practice Exercises - First Exam

(Prof. Baha Alzalg)

March 18, 2022

Question 1.

[4 points] Which of the following sentences are propositions? What are the truth values of those that are propositions? (Here, in items 3 and 5, *x* and *y* are any real numbers).

5. x + y = y + x.

7. What time is it?

United States.

6. Do not submit the solution of this homework.

8. John F. Kennedy is the 35th president of the

1. 2 + 3 = 5.

2. 5 + 7 = 10.

- 3. x + 2 = 11.
- 4. Your answer to item 3 is incorrect.

Question 2.

[3 points] What is the negation of each of the following propositions?

- 1. Today is Thursday.
- 2. 2 + 1 = 3.
- 3. The summer in Santiago is not hot.

Question 3.

[4 points] Let P and Q be propositions

- *P* : I bought a lottery ticket this week.
- *Q* : I won the million dollar jackpot on Friday.

Express each of the following propositions as an English sentence.

1. $\neg P$. 2. $P \lor Q$. 3. $P \land Q$. 4. $\neg P \land \neg Q$.

Question 4.

[4 points] Let *P* and *Q* be propositions

- *P* : It is below freezing.
- Q: It is snowing.

Write the following propositions using *P* and *Q* and logical connectives.

- 1. It is below freezing and snowing.
- 2. It is below freezing but not snowing.
- 3. It is not below freezing and it is not snowing.
- 4. It is either snowing or below freezing (or both).

Question 5.

[11 points] Construct truth tables for the compound propositions:

1. $P \land \neg P$.	9. $P \rightarrow \neg Q$.
2. $(P \lor \neg Q) \to Q$.	10. $\neg P \leftrightarrow Q$.
3. $(P \lor Q) \to (P \land Q)$.	11. $(P \leftrightarrow Q) \lor (\neg P \leftrightarrow Q)$.
4. $(P \to Q) \leftrightarrow (\neg Q \to \neg P).$	12. $(P \land Q) \lor R$.
5. $P \oplus P$.	13. $(P \land Q) \lor \neg R$.
6. $P \oplus \neg Q$.	14. $P \rightarrow (\neg Q \lor R)$.
7. $\neg P \oplus \neg Q$.	15. $(P \rightarrow Q) \land (\neg P \rightarrow R)$.
8. $(P \oplus Q) \land (P \oplus \neg Q)$.	16. $(P \leftrightarrow Q) \lor (\neg Q \leftrightarrow R)$.

Question 6.

[3 points] Write the contrapositive, converse, and inverse of the proposition: "If the Sun is shrunk to the size of your head, then the Earth will be the size of the pupil of your eye".

Question 7.

[1 point] What is the negation of the following proposition?

"If the Sun is shining in Santiago's sky, then I will go to the nearest beach and do a little physical exercise."

Question 8.

[4+4 points] Determine if each of the following implications is a tautology or a contradiction. Justify your answer without using truth tables.

1. $[\neg P \land (P \lor Q)] \rightarrow Q.$ 2. $[P \land (P \rightarrow Q)] \rightarrow Q.$

Question 9.

[4 points] Construct a *disjunctive normal form* having the following truth table.

Р	Q	R	Statement
Т	Т	Т	F
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	F

Question 10.

[3 point] For each of the following statements, write an equivalent statement in conjunctive normal form.

1. $\neg(A \lor B)$. 2. $\neg(A \land B)$. 3. $A \lor (B \land C)$.

Question 11.

[5 points] Let the domain of discourse consist of the non-zero integers, i.e., $D = \mathbb{Z} - \{0\}$. Give the truth value of each of the following quantified statements. Find a value of *x* which supports your conclusion.

1. $\forall x \in D, x < 2x$.	4. $\forall x \in D, \frac{x}{2x} < x.$
2. $\exists x \in D, x + x = x - x.$	
3. $\exists x \in D, x^2 = 2x$.	5. $\exists x \in D, \frac{x}{x} = x.$

Question 12.

[6 points] Consider the following two propositions.

 $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, P(x, y), \tag{1}$

$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, P(x, y).$$
⁽²⁾

Using the above two propositions, give a predicate P(x, y) that makes (or explain why it is not possible):

1. Propositions (1) and (2) are both true.

- 2. Propositions (1) and (2) are both false.
- 3. Proposition (1) is true and Proposition (2) is false.
- 4. Proposition (1) is false and Proposition (2) is true.

Question 13.

[4 points] Negate the false proposition $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0$.

Question 14.

[2 points] Find the number of subsets of the given set. Justify your answer.

 $T = \{n \in \mathbb{N} : n \text{ is an even number between 21 and 41}\}.$

Question 15.

[8 points] Use mathematical induction to prove that the cardinality of the powerset of a finite set *A* is equal to 2^n if the cardinality of *A* is *n*. Show all the steps in the proof.