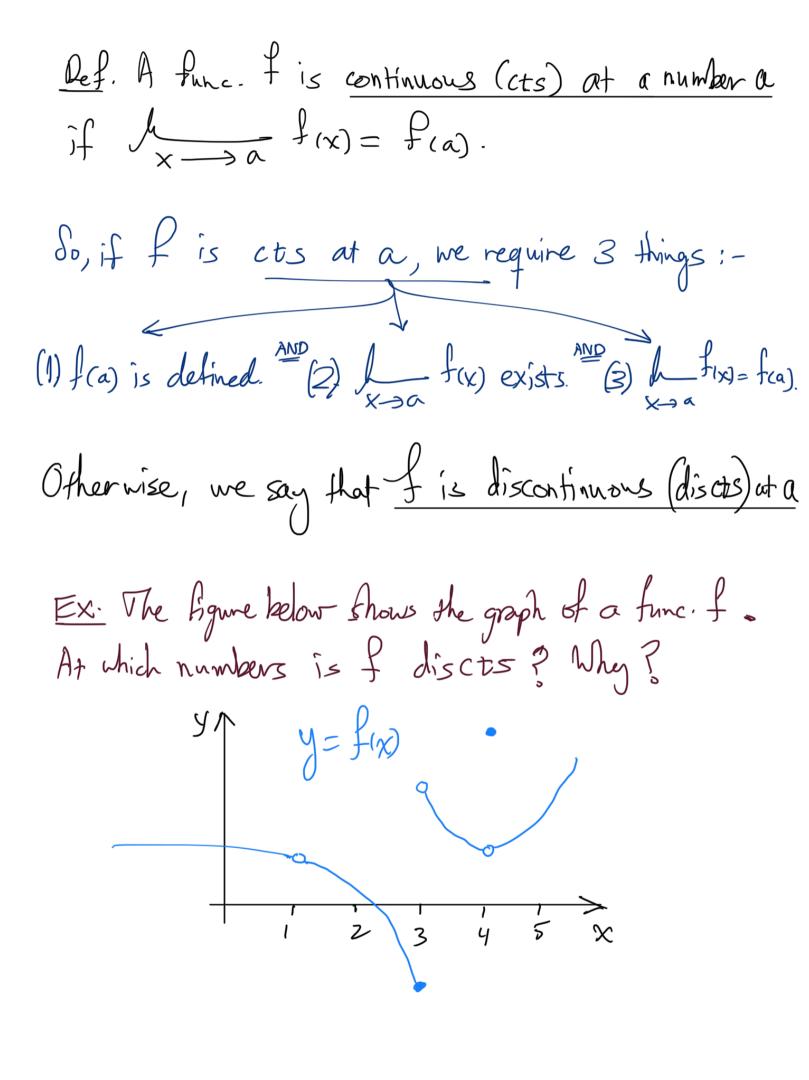
Continuity

"Continuity" is the intuitive concept of a func. that varies with no jumps.

For example, the height of a growing flower at time t is a continuous func. In contrast, the amount of money in a bank account of a time t is a discontinuous func. (because it jumps each time when money is deposited or withdrawn.

Continuity at a point.

In the previous lecture, we observed that the limit of a func. fix) as $x \to a$ can be found simply by calculating f(a). Functions with this property are called continuous at a.



Soln.
$$f$$
 is discts at the numbers:-

1 because $f(1)$ is undefined.

3 because $f(x)$ DNE.

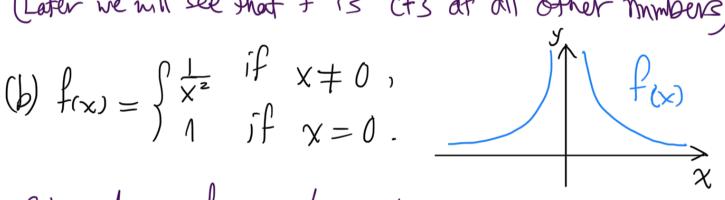
 $x \rightarrow 3$
 $f(x) \neq f(5)$.

(6)
$$f(x) = \frac{\chi^2 - \chi - 2}{\chi - 2}$$
.

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
.

Soln. $f(z)$ is undefined, so $f(z)$ discrease at 2 .

(b)
$$f_{(x)} = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$



(c)
$$f(x) = \begin{cases} \frac{\chi^2 - \chi - 2}{\chi - 2} & \text{if } \chi \neq 2, \\ 1 & \text{if } \chi = 2. \end{cases}$$

Soln.
$$f(x) = \int_{X \to 2} \frac{x^2 - x - 2}{x - 2} = \int_{X \to 2} \frac{(x - 2)(x + 1)}{x x}$$

 $= \int_{X \to 2} \frac{(x + 1)}{x} = 3$.
But $f(2) = 1 + \int_{X \to 2} f(x)$.
By $f(3) = 1 + \int_{X \to 2} f(3) = 1$.

Theorem. If f and g are cts at a and c is a constant, then the following functions are also cts at a:
1. $f \pm g$ 2. cf3. fg4. $\frac{f}{g}$ if $g(a) \neq 0$ -

Theorem: If g is cts at a and f is cts of g(a), then f = g is cts at a.

The Composition func. given by $(f \circ g)(x) = f(g(x))$.

Ex. Prove that $h(x) = \ln(1 + \cos x)$ is cts at x=0. Proof. Note that $9\% \stackrel{\text{def}}{=} \cos x$ is cts at x=0, and $f(x) \stackrel{\text{def}}{=} \ln(1 + x)$ is cts at x=1. Using the above theorem, $\lambda(x) = f_{(y|x)} = \ln(1+\cos x)$ is cts at x = 0.

Ex. Find the value of A Hat nakes the func. $f(x) = \begin{cases} A^2x^2, & \chi < 2; \\ (1-A)x, & \chi > 2; \end{cases}$ cts at $\chi = 2$.

Solv. f is cts at $x=2 \Rightarrow 2-2A = f(x) = \int_{X\to 2^{-}}^{x} f(x) = 4A^{2}$. $\Rightarrow 2A^{2}+A-1=0 \Rightarrow (A+1)/2A-1)=0 \Rightarrow A=-1=\frac{1}{2}$.

Types of discontinuities

f is discts at X
Line fix) DNE

Line fix) exists, but

Line fix) + fca)

Line fix)

I is discts at X=a if: (+ a fr) exists, but fx) DNE Ta) is undefined Nonremovable f has a removable I has a removable dis continuity. discontinuity at a discontinuity at a or X-a The Dirichlet function I has a jump discontinuity at a. discontinuity at a. Nonvensable Nonremovable Kensvable Renovable Infinite jump

 $\Omega \ln -2 = \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x) = 2.$ is I has a jump discont. at x=0. $\int_{A}^{2} f(x) = \begin{cases} x^{2}+4, & x < 2. \\ 5, & x = 2. \end{cases} \text{ at } x = 2.$ Soln. 8= f(x) = f(x) = 5. 30 f has a removable distort. At X=2. (3) f(x) = fan x, at $x = \frac{\pi}{2}$. Solv $\int_{X \to \frac{\pi}{2}^{-}} \tan X = \int_{X \to \frac{\pi}{2}^{-}} \frac{5 \ln x}{\cos x} = M$ so I has an infinite discont. at $x = \frac{\pi}{2}$.

Ex. Petermine the discontinuity types of the func.

$$\begin{cases}
\chi^{3} & \text{if } \chi < -1 \\
\chi^{2} = \chi & \text{if } \chi < 0
\end{cases}$$

$$f(x) = \begin{cases}
\chi^{3} & \text{if } \chi < -1 \\
\chi^{2} = \chi & \text{if } \chi < 0
\end{cases}$$

$$\frac{3-\chi}{\chi < -1} & \text{if } \chi < \chi < 2$$

$$\frac{\chi < -1}{\chi < -2} & \text{if } \chi < \chi < 4$$

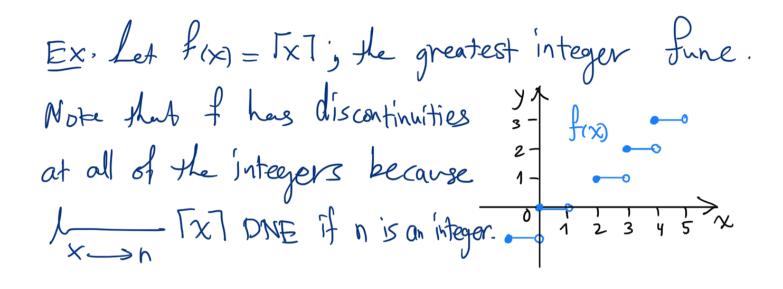
$$\frac{15}{10-2\chi} & \text{if } \chi < 5$$

$$\frac{1}{10-2\chi} & \text{if } \chi < 5$$

Solh.	a	f(a)	Lx→a-fix	Line f(x)	Result
	-1	-1	– 1	-1	Cts
	0	3	-2	3	jump discont.
	2	1	1	DNE	infinite discont.
	4	machined	7.5	7.5	removable discont.
	5	1	DNE	1	infinite discont.

One-sided continuity.

Def. A func. I is cts from the right at a if $l_{x \rightarrow a} + f(x) = f(a)$ and fis cts from the left at a if $\Lambda \longrightarrow a^{-} f(x) = f(a).$



Now, at each integer n, fix = TXT is cts from right because I [X] = n = fin), and discoss from left because I TXT = n-1 \(\frac{1}{2} \) Fin.

Continuity on intervals.

Definitions. Let f be a func. and ab ER (a < b).

(1) fis cts on (a,b) if f is cts at every point on (a,b).
(2) fis cts on [a,b] if i) f is cts on (a,b).

ii) f is cts from right at a, and iii) fis cts from left at b.

(3) fiscts if fiscts everywhere, i.e., f is cts on (-00,00).

Ex. Prove that the func. $f(x) = 1 - \sqrt{1-x^2}$ is cts on the interval [-1,1]. Ssh. If -1 < a < 1, then $\Lambda_{x \to a} f(x) = \Lambda_{x \to a} \left(1 - \sqrt{1 - x^2}\right)$ $= 1 - \int_{X \to a} \sqrt{1 - \chi^2}$ $= 1 - \sqrt{\frac{1-x^2}{x \rightarrow a}} \left(1-x^2\right)$ $=1-\sqrt{1-\alpha^2}$ = f(a). Thus, f is cts on (-1,1). Note also that

f(x) = 1 = f(-1) and f(x) = 1 = f(0). So, f(x) = 1 = f(-1) and f(x) = 1 = f(0). So, f(x) = 1 = f(-1) and f(x) = 1 = f(0). So, f(x) = 1 = f(-1) and f(x) = 1 = f(0). And cts from left at 1. Therefore, f(x) = 1 = f(0). Donel.

Theorem.

- (a) Any polynomial is cts everywhere, that is, it is cts on $IR = (-\infty, \infty)$.

 (b) Any rational func. is cts whenever it is defined.

Ex· (1) The poly. $P(x) = \chi^3 + 2\chi^2 - 1$ is cts on \mathbb{R} .

(2) The rational func $R(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is cts

Theorem: The following types of functions are cts at every number in their domains;

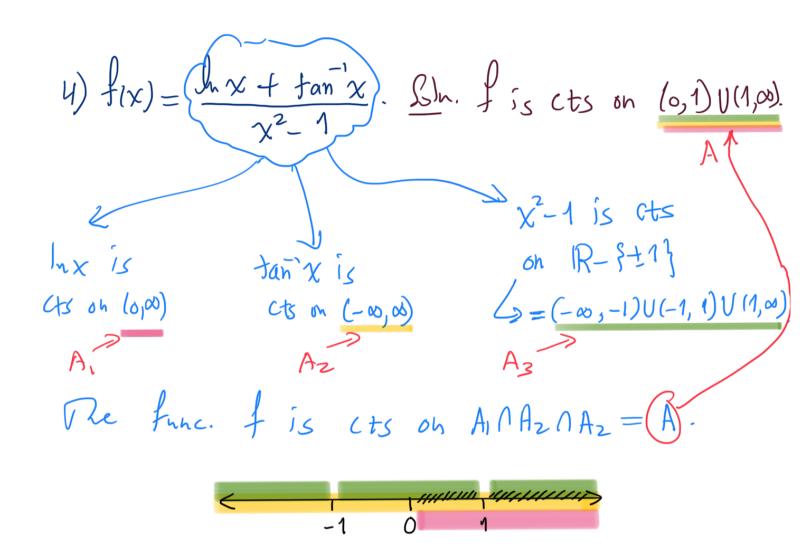
- · Polynomials.
- · Rational functions.
- Rational functions.

 Root functions-e-g, \sqrt{x} is cts show > 0 if n is even.
- · Trigonometric functions. eg., sinx and cosx are cts on R.
- · Inverse trigonometric funcs. e.g., tan x is cts on IR
- · Exponential functions. e.g., exis on R.
- · Loyarithmic functions. e.g., Inx is cts for x>0.

Ex. Determine where is the given func. Cts?

1) $f(x) = \cos \frac{1}{x} \cdot \frac{1}{x} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

3) $f_{1x} = \sqrt{\frac{x^2+1}{x-9}}$. Soln. f_{1s} cts on $(9, \infty)$. When x = 9, the func. $\frac{x^2+1}{x-9}$ is undefined. x positive! Now, f_{1s} discoss when x = 9 or $\frac{x^2+1}{x-9} < 0$, So x = 9 or x - 9 < 0, i.e., x < 9, i.e., $x \in (-\infty, 9]$.



Theorem. If
$$f$$
 is cts at b and $f(g(x)) = b$, then $f(g(x)) = f(b)$. In other words,
$$f(g(x)) = f(g(x)) = f(f(x)) = f(f(x)$$

Ex. Evaluate
$$1 \times 1 = \sin^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$$
.

Solve Because $\sin^{-1}x$ is a cts time, we have

$$1 \times 1 = \sin^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right) = \sin^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$$

$$= \sin^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$$

Searching keywords:

- Continuity الاتصال
- Removable, jump, infinite discontinuities
- Where are each of the following functions discontinuous/ continuous.
- The University of Jordan الجامعة الأردنية
- Calculus I 1 تفاضل وتكامل
- Baha Alzalg بهاء الزالق

References: See the course website

http://sites.ju.edu.jo/sites/Alzalg/Pages/101.aspx

For any comments or concerns, please use my email to contact me.

This material might not be used for commercial purposes.

Copyright: All Rights Reserved.

B. Alzalg, 2020, Amman, Jordan